Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.1.32.142ch |
$2$ |
$32$ |
$1$ |
$32$ |
$1$ |
$1$ |
$1$ |
$32$ |
$1$ |
$32$ |
$142$ |
$0$ |
$142$ |
$\Q_{2}$ |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[2, 3, \frac{13}{4}, \frac{13}{4}, 4]$ |
$\langle1, 2, \frac{21}{8}, \frac{47}{16}, \frac{111}{32}\rangle$ |
$(2, 4, 5, 5, 17)$ |
$x^{32} + 16 b_{127} x^{31} + 8 a_{94} x^{30} + 16 b_{125} x^{29} + 8 b_{92} x^{28} + 16 b_{123} x^{27} + 16 b_{121} x^{25} + 8 b_{88} x^{24} + 16 b_{119} x^{23} + 16 b_{117} x^{21} + 8 b_{84} x^{20} + 16 b_{115} x^{19} + 16 b_{113} x^{17} + 4 b_{48} x^{16} + 16 a_{111} x^{15} + (8 b_{72} + 16 c_{104}) x^8 + 16 b_{102} x^6 + 16 b_{100} x^4 + 16 b_{98} x^2 + 8 c_{64} + 16 c_{96} + 32 c_{128} + 2$ |
$16$ |
$0$ |
$65536$ |
$65536$ |
$0$ |
$0\%$ |
$4$ |
2.1.2.3a1.1-1.16.94bd |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$94$ |
$3$ |
$96$ |
$\Q_{2}(\sqrt{-2})$ |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[4, \frac{9}{2}, \frac{9}{2}, 6]$ |
$\langle2, \frac{13}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ |
$(4, 5, 5, 17)$ |
$x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + a_{62} \pi^4 x^{14} + b_{93} \pi^6 x^{13} + b_{60} \pi^4 x^{12} + b_{91} \pi^6 x^{11} + b_{89} \pi^6 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + b_{87} \pi^6 x^7 + b_{70} \pi^5 x^6 + b_{85} \pi^6 x^5 + (b_{68} \pi^5 + b_{52} \pi^4) x^4 + b_{83} \pi^6 x^3 + b_{66} \pi^5 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ |
$8$ |
$0$ |
$32768$ |
$16384$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.2-1.16.94bd |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$94$ |
$3$ |
$96$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[4, \frac{9}{2}, \frac{9}{2}, 6]$ |
$\langle2, \frac{13}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ |
$(4, 5, 5, 17)$ |
$x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + a_{62} \pi^4 x^{14} + b_{93} \pi^6 x^{13} + b_{60} \pi^4 x^{12} + b_{91} \pi^6 x^{11} + b_{89} \pi^6 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + b_{87} \pi^6 x^7 + b_{70} \pi^5 x^6 + b_{85} \pi^6 x^5 + (b_{68} \pi^5 + b_{52} \pi^4) x^4 + b_{83} \pi^6 x^3 + b_{66} \pi^5 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ |
$8$ |
$0$ |
$32768$ |
$16384$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.3-1.16.94bd |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$94$ |
$3$ |
$96$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[4, \frac{9}{2}, \frac{9}{2}, 6]$ |
$\langle2, \frac{13}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ |
$(4, 5, 5, 17)$ |
$x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + a_{62} \pi^4 x^{14} + b_{93} \pi^6 x^{13} + b_{60} \pi^4 x^{12} + b_{91} \pi^6 x^{11} + b_{89} \pi^6 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + b_{87} \pi^6 x^7 + b_{70} \pi^5 x^6 + b_{85} \pi^6 x^5 + (b_{68} \pi^5 + b_{52} \pi^4) x^4 + b_{83} \pi^6 x^3 + b_{66} \pi^5 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ |
$8$ |
$0$ |
$32768$ |
$16384$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.4-1.16.94bd |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$94$ |
$3$ |
$96$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[4, \frac{9}{2}, \frac{9}{2}, 6]$ |
$\langle2, \frac{13}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ |
$(4, 5, 5, 17)$ |
$x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + a_{62} \pi^4 x^{14} + b_{93} \pi^6 x^{13} + b_{60} \pi^4 x^{12} + b_{91} \pi^6 x^{11} + b_{89} \pi^6 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + b_{87} \pi^6 x^7 + b_{70} \pi^5 x^6 + b_{85} \pi^6 x^5 + (b_{68} \pi^5 + b_{52} \pi^4) x^4 + b_{83} \pi^6 x^3 + b_{66} \pi^5 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ |
$8$ |
$0$ |
$32768$ |
$16384$ |
$0$ |
$0\%$ |
$3$ |
2.1.4.11a1.1-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.1 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.2-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.2 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.3-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.3 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.4-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.4 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.5-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.5 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.6-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.6 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.7-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.7 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.8-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.8 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.9-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.9 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.10-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.10 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.11-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.11 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.12-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.12 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.13-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.13 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.14-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.14 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.15-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.15 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.16-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.16 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.17-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.17 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.18-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.18 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$2048$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.19-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.19 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.20-1.8.54e |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$54$ |
$11$ |
$62$ |
2.1.4.11a1.20 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 5, 8]$ |
$\langle\frac{5}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ |
$(5, 5, 17)$ |
$x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + b_{20} \pi^3) x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + b_{34} \pi^5 x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{40} \pi^6 + \pi$ |
$4$ |
$0$ |
$8192$ |
$4096$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.1-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.1 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.2-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.2 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.3-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.3 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.4-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.4 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.5-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.5 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.6-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.6 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.7-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.7 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.8-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.8 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.9-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.9 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.10-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.10 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.11-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.11 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.12-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.12 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.13-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.13 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.14-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.14 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.15-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.15 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.16-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.16 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.17-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.17 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.18-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.18 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.19-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.19 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.20-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.20 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.21-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.21 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.22-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.22 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.23-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.23 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.24-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.24 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |
2.1.8.28b1.25-1.4.30d |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$30$ |
$28$ |
$51$ |
2.1.8.28b1.25 |
$[3, 4, \frac{17}{4}, \frac{17}{4}, 5]$ |
$[5, 11]$ |
$\langle\frac{5}{2}, \frac{27}{4}\rangle$ |
$(5, 17)$ |
$x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + a_{27} \pi^7) x^3 + (b_{18} \pi^5 + b_{14} \pi^4 + a_{10} \pi^3) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8) x + c_{44} \pi^{12} + c_{20} \pi^6 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$2$ |