Learn more

Refine search


Results (1-50 of 89 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.134dm $2$ $32$ $1$ $32$ $134$ $\Q_{2}$ $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[2, 3, \frac{13}{4}, \frac{41}{12}, \frac{41}{12}]$ $\langle1, 2, \frac{21}{8}, \frac{145}{48}, \frac{103}{32}\rangle$ $(2, 4, 5, \frac{19}{3}, \frac{19}{3})$ $x^{32} + 8 b_{92} x^{28} + 8 b_{88} x^{24} + 8 a_{84} x^{20} + 4 b_{48} x^{16} + 16 b_{109} x^{13} + 16 b_{107} x^{11} + 16 b_{106} x^{10} + 16 b_{105} x^9 + (8 b_{72} + 16 c_{104}) x^8 + 16 a_{103} x^7 + 16 b_{102} x^6 + 16 b_{100} x^4 + 16 b_{98} x^2 + 8 c_{64} + 16 c_{96} + 2$ $8$ $0$ $2048$
2.1.2.3a1.1-1.16.86bo $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-2})$ $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ $\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ $(4, 5, \frac{19}{3}, \frac{19}{3})$ $x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ $4$ $0$ $1024$
2.1.2.3a1.2-1.16.86bo $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-2\cdot 5})$ $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ $\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ $(4, 5, \frac{19}{3}, \frac{19}{3})$ $x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ $4$ $0$ $1024$
2.1.2.3a1.3-1.16.86bo $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{2})$ $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ $\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ $(4, 5, \frac{19}{3}, \frac{19}{3})$ $x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ $4$ $0$ $1024$
2.1.2.3a1.4-1.16.86bo $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{2\cdot 5})$ $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ $\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ $(4, 5, \frac{19}{3}, \frac{19}{3})$ $x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ $4$ $0$ $1024$
2.1.4.11a1.1-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.1 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.2-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.2 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.3-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.3 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.4-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.4 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.5-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.5 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.6-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.6 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.7-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.7 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.8-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.8 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.9-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.9 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.10-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.10 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.11-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.11 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.12-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.12 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.13-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.13 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.14-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.14 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.15-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.15 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.16-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.16 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.17-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.17 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.18-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.18 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.19-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.19 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.4.11a1.20-1.8.46j $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.20 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[5, \frac{17}{3}, \frac{17}{3}]$ $\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ $(5, \frac{19}{3}, \frac{19}{3})$ $x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ $2$ $0$ $256$
2.1.8.28b1.1-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.1 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.2-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.2 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.3-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.3 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.4-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.4 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.5-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.5 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.6-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.6 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.7-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.7 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.8-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.8 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.9-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.9 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.10-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.10 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.11-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.11 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.12-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.12 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.13-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.13 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.14-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.14 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.15-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.15 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.16-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.16 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.17-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.17 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.18-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.18 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.19-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.19 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.20-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.20 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.21-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.21 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.22-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.22 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.23-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.23 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.24-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.24 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
2.1.8.28b1.25-1.4.22a $2$ $4$ $1$ $4$ $22$ 2.1.8.28b1.25 $[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ $[\frac{19}{3}, \frac{19}{3}]$ $\langle\frac{19}{6}, \frac{19}{4}\rangle$ $(\frac{19}{3}, \frac{19}{3})$ $x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ $1$ $0$ $64$
Next   displayed columns for results