| Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
| 2.1.32.134dm |
$2$ |
$32$ |
$1$ |
$32$ |
$1$ |
$1$ |
$1$ |
$32$ |
$1$ |
$32$ |
$134$ |
$0$ |
$134$ |
$\Q_{2}$ |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[2, 3, \frac{13}{4}, \frac{41}{12}, \frac{41}{12}]$ |
$\langle1, 2, \frac{21}{8}, \frac{145}{48}, \frac{103}{32}\rangle$ |
$(2, 4, 5, \frac{19}{3}, \frac{19}{3})$ |
$x^{32} + 8 b_{92} x^{28} + 8 b_{88} x^{24} + 8 a_{84} x^{20} + 4 b_{48} x^{16} + 16 b_{109} x^{13} + 16 b_{107} x^{11} + 16 b_{106} x^{10} + 16 b_{105} x^9 + (8 b_{72} + 16 c_{104}) x^8 + 16 a_{103} x^7 + 16 b_{102} x^6 + 16 b_{100} x^4 + 16 b_{98} x^2 + 8 c_{64} + 16 c_{96} + 2$ |
$8$ |
$0$ |
$2048$ |
$2048$ |
$0$ |
$0\%$ |
$4$ |
| 2.1.2.3a1.1-1.16.86bo |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$86$ |
$3$ |
$88$ |
$\Q_{2}(\sqrt{-2})$ |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ |
$\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ |
$(4, 5, \frac{19}{3}, \frac{19}{3})$ |
$x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$3$ |
| 2.1.2.3a1.2-1.16.86bo |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$86$ |
$3$ |
$88$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ |
$\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ |
$(4, 5, \frac{19}{3}, \frac{19}{3})$ |
$x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$3$ |
| 2.1.2.3a1.3-1.16.86bo |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$86$ |
$3$ |
$88$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ |
$\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ |
$(4, 5, \frac{19}{3}, \frac{19}{3})$ |
$x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$3$ |
| 2.1.2.3a1.4-1.16.86bo |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$1$ |
$1$ |
$16$ |
$2$ |
$32$ |
$86$ |
$3$ |
$88$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[4, \frac{9}{2}, \frac{29}{6}, \frac{29}{6}]$ |
$\langle2, \frac{13}{4}, \frac{97}{24}, \frac{71}{16}\rangle$ |
$(4, 5, \frac{19}{3}, \frac{19}{3})$ |
$x^{16} + b_{77} \pi^5 x^{13} + b_{60} \pi^4 x^{12} + b_{75} \pi^5 x^{11} + b_{74} \pi^5 x^{10} + b_{73} \pi^5 x^9 + (c_{72} \pi^5 + b_{56} \pi^4 + b_{40} \pi^3) x^8 + a_{71} \pi^5 x^7 + b_{70} \pi^5 x^6 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{66} \pi^5 x^2 + c_{64} \pi^5 + \pi$ |
$4$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$3$ |
| 2.1.4.11a1.1-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.1 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.2-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.2 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.3-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.3 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.4-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.4 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.5-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.5 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.6-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.6 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.7-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.7 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.8-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.8 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.9-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.9 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.10-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.10 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.11-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.11 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.12-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.12 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.13-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.13 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.14-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.14 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.15-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.15 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.16-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.16 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.17-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.17 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.18-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.18 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$64$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.19-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.19 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.4.11a1.20-1.8.46j |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$1$ |
$1$ |
$8$ |
$4$ |
$32$ |
$46$ |
$11$ |
$54$ |
2.1.4.11a1.20 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[5, \frac{17}{3}, \frac{17}{3}]$ |
$\langle\frac{5}{2}, \frac{49}{12}, \frac{39}{8}\rangle$ |
$(5, \frac{19}{3}, \frac{19}{3})$ |
$x^8 + a_{39} \pi^5 x^7 + b_{38} \pi^5 x^6 + b_{45} \pi^6 x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + b_{43} \pi^6 x^3 + (b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{41} \pi^6 x + c_{40} \pi^6 + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$2$ |
| 2.1.8.28b1.1-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.1 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.2-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.2 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.3-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.3 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.4-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.4 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.5-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.5 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.6-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.6 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.7-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.7 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.8-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.8 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.9-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.9 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.10-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.10 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.11-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.11 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.12-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.12 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.13-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.13 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.14-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.14 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.15-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.15 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.16-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.16 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.17-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.17 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.18-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.18 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.19-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.19 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.20-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.20 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.21-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.21 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.22-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.22 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.23-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.23 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.24-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.24 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
| 2.1.8.28b1.25-1.4.22a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$1$ |
$1$ |
$4$ |
$8$ |
$32$ |
$22$ |
$28$ |
$43$ |
2.1.8.28b1.25 |
$[3, 4, \frac{17}{4}, \frac{53}{12}, \frac{53}{12}]$ |
$[\frac{19}{3}, \frac{19}{3}]$ |
$\langle\frac{19}{6}, \frac{19}{4}\rangle$ |
$(\frac{19}{3}, \frac{19}{3})$ |
$x^4 + (b_{23} \pi^6 + a_{19} \pi^5) x^3 + (b_{22} \pi^6 + b_{18} \pi^5 + b_{14} \pi^4) x^2 + (b_{25} \pi^7 + b_{21} \pi^6) x + \pi$ |
$1$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |