Learn more

Refine search


Results (1-50 of 329 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.134cg $2$ $32$ $1$ $32$ $134$ $\Q_{2}$ $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[2, \frac{13}{6}, \frac{13}{6}, 3, 4]$ $\langle1, \frac{19}{12}, \frac{15}{8}, \frac{39}{16}, \frac{103}{32}\rangle$ $(2, \frac{7}{3}, \frac{7}{3}, 9, 25)$ $x^{32} + 16 b_{127} x^{31} + 8 b_{94} x^{30} + 16 b_{125} x^{29} + 4 a_{60} x^{28} + 16 b_{123} x^{27} + 8 b_{90} x^{26} + 16 b_{121} x^{25} + 4 b_{56} x^{24} + 16 b_{119} x^{23} + 8 b_{86} x^{22} + 16 b_{117} x^{21} + 16 b_{115} x^{19} + 8 b_{82} x^{18} + 16 b_{113} x^{17} + 4 b_{48} x^{16} + 16 b_{111} x^{15} + 8 a_{78} x^{14} + 16 b_{109} x^{13} + 16 b_{107} x^{11} + 16 b_{105} x^9 + 16 a_{103} x^7 + 8 b_{68} x^4 + 8 c_{64} + 16 c_{96} + 32 c_{128} + 2$ $8$ $0$ $524288$
2.1.2.3a1.1-1.16.86q $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-2})$ $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 4, 6]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + a_{28} \pi^2 x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + b_{24} \pi^2 x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ $4$ $0$ $262144$
2.1.2.3a1.2-1.16.86q $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-2\cdot 5})$ $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 4, 6]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + a_{28} \pi^2 x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + b_{24} \pi^2 x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ $4$ $0$ $262144$
2.1.2.3a1.3-1.16.86q $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{2})$ $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 4, 6]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + a_{28} \pi^2 x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + b_{24} \pi^2 x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ $4$ $0$ $262144$
2.1.2.3a1.4-1.16.86q $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{2\cdot 5})$ $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 4, 6]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + a_{28} \pi^2 x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + b_{24} \pi^2 x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + \pi$ $4$ $0$ $262144$
2.1.4.11a1.1-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.1 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.2-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.2 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.3-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.3 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.4-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.4 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.5-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.5 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.6-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.6 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.7-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.7 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.8-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.8 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.9-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.9 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.10-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.10 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.11-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.11 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.12-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.12 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.13-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.13 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.14-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.14 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.15-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.15 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.16-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.16 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.17-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.17 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.18-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.18 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.19-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.19 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.4.11a1.20-1.8.46c $2$ $8$ $1$ $8$ $46$ 2.1.4.11a1.20 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}, 8]$ $\langle\frac{7}{6}, \frac{7}{4}, \frac{39}{8}\rangle$ $(\frac{7}{3}, \frac{7}{3}, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + a_{14} \pi^2 x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + b_{12} \pi^2 x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + \pi$ $2$ $0$ $16384$
2.1.8.22c1.1-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.1 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.2-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.2 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.3-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.3 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.4-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.4 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.5-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.5 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.6-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.6 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.7-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.7 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.22c1.8-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.22c1.8 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.31a1.1-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.1 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.2-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.2 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.3-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.3 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.4-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.4 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.5-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.5 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.6-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.6 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.7-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.7 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.8-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.8 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.9-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.9 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.10-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.10 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.11-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.11 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.12-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.12 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.13-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.13 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.14-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.14 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.15-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.15 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.16-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.16 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
2.1.8.31a1.17-1.4.10a $2$ $4$ $1$ $4$ $10$ 2.1.8.31a1.17 $[3, \frac{19}{6}, \frac{19}{6}, 4, 5]$ $[\frac{7}{3}, \frac{7}{3}]$ $\langle\frac{7}{6}, \frac{7}{4}\rangle$ $(\frac{7}{3}, \frac{7}{3})$ $x^4 + a_{7} \pi^2 x^3 + b_{6} \pi^2 x^2 + b_{9} \pi^3 x + \pi$ $1$ $0$ $4$
Next   displayed columns for results