Learn more

Refine search


Results (1-50 of 332 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.118cr $2$ $32$ $1$ $32$ $118$ $\Q_{2}$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 2, \frac{5}{2}, \frac{7}{2}]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}, \frac{31}{16}, \frac{87}{32}\rangle$ $(1, 1, 5, 9, 25)$ $x^{32} + 8 b_{95} x^{31} + 4 a_{62} x^{30} + 8 b_{93} x^{29} + 4 b_{60} x^{28} + 8 b_{91} x^{27} + 8 b_{89} x^{25} + 2 a_{24} x^{24} + 8 a_{87} x^{23} + 4 b_{52} x^{20} + (2 b_{16} + 8 c_{80} + 16 c_{112}) x^{16} + 16 b_{111} x^{15} + 8 b_{78} x^{14} + 16 b_{109} x^{13} + 4 a_{44} x^{12} + 16 b_{107} x^{11} + 8 b_{74} x^{10} + 16 b_{105} x^9 + 16 b_{103} x^7 + 8 b_{70} x^6 + 16 b_{101} x^5 + 16 b_{99} x^3 + 8 b_{66} x^2 + 16 b_{97} x + 4 c_{32} + 8 c_{64} + 2$ $16$ $0$ $524288$
2.1.2.2a1.1-1.16.86bu $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-1})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 4, 6]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(1, 5, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + (b_{44} \pi^3 + a_{28} \pi^2) x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + a_{8} \pi x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $16$ $0$ $262144$
2.1.2.2a1.2-1.16.86bu $2$ $16$ $1$ $16$ $86$ $\Q_{2}(\sqrt{-5})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 4, 6]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{23}{8}, \frac{71}{16}\rangle$ $(1, 5, 9, 25)$ $x^{16} + (b_{95} \pi^6 + b_{79} \pi^5) x^{15} + (b_{62} \pi^4 + a_{46} \pi^3) x^{14} + (b_{93} \pi^6 + b_{77} \pi^5) x^{13} + (b_{44} \pi^3 + a_{28} \pi^2) x^{12} + (b_{91} \pi^6 + b_{75} \pi^5) x^{11} + b_{58} \pi^4 x^{10} + (b_{89} \pi^6 + b_{73} \pi^5) x^9 + a_{8} \pi x^8 + (b_{87} \pi^6 + a_{71} \pi^5) x^7 + b_{54} \pi^4 x^6 + b_{85} \pi^6 x^5 + b_{36} \pi^3 x^4 + b_{83} \pi^6 x^3 + b_{50} \pi^4 x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $16$ $0$ $262144$
2.1.2.3a1.1-1.16.70t $2$ $16$ $1$ $16$ $70$ $\Q_{2}(\sqrt{-2})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 3, 5]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{15}{8}, \frac{55}{16}\rangle$ $(1, 1, 9, 25)$ $x^{16} + (b_{79} \pi^5 + b_{63} \pi^4) x^{15} + (b_{46} \pi^3 + a_{30} \pi^2) x^{14} + (b_{77} \pi^5 + b_{61} \pi^4) x^{13} + a_{12} \pi x^{12} + (b_{75} \pi^5 + b_{59} \pi^4) x^{11} + b_{42} \pi^3 x^{10} + (b_{73} \pi^5 + b_{57} \pi^4) x^9 + b_{8} \pi x^8 + (b_{71} \pi^5 + a_{55} \pi^4) x^7 + b_{38} \pi^3 x^6 + b_{69} \pi^5 x^5 + b_{67} \pi^5 x^3 + b_{34} \pi^3 x^2 + b_{65} \pi^5 x + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $131072$
2.1.2.3a1.2-1.16.70t $2$ $16$ $1$ $16$ $70$ $\Q_{2}(\sqrt{-2\cdot 5})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 3, 5]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{15}{8}, \frac{55}{16}\rangle$ $(1, 1, 9, 25)$ $x^{16} + (b_{79} \pi^5 + b_{63} \pi^4) x^{15} + (b_{46} \pi^3 + a_{30} \pi^2) x^{14} + (b_{77} \pi^5 + b_{61} \pi^4) x^{13} + a_{12} \pi x^{12} + (b_{75} \pi^5 + b_{59} \pi^4) x^{11} + b_{42} \pi^3 x^{10} + (b_{73} \pi^5 + b_{57} \pi^4) x^9 + b_{8} \pi x^8 + (b_{71} \pi^5 + a_{55} \pi^4) x^7 + b_{38} \pi^3 x^6 + b_{69} \pi^5 x^5 + b_{67} \pi^5 x^3 + b_{34} \pi^3 x^2 + b_{65} \pi^5 x + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $131072$
2.1.2.3a1.3-1.16.70t $2$ $16$ $1$ $16$ $70$ $\Q_{2}(\sqrt{2})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 3, 5]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{15}{8}, \frac{55}{16}\rangle$ $(1, 1, 9, 25)$ $x^{16} + (b_{79} \pi^5 + b_{63} \pi^4) x^{15} + (b_{46} \pi^3 + a_{30} \pi^2) x^{14} + (b_{77} \pi^5 + b_{61} \pi^4) x^{13} + a_{12} \pi x^{12} + (b_{75} \pi^5 + b_{59} \pi^4) x^{11} + b_{42} \pi^3 x^{10} + (b_{73} \pi^5 + b_{57} \pi^4) x^9 + b_{8} \pi x^8 + (b_{71} \pi^5 + a_{55} \pi^4) x^7 + b_{38} \pi^3 x^6 + b_{69} \pi^5 x^5 + b_{67} \pi^5 x^3 + b_{34} \pi^3 x^2 + b_{65} \pi^5 x + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $131072$
2.1.2.3a1.4-1.16.70t $2$ $16$ $1$ $16$ $70$ $\Q_{2}(\sqrt{2\cdot 5})$ $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 3, 5]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{15}{8}, \frac{55}{16}\rangle$ $(1, 1, 9, 25)$ $x^{16} + (b_{79} \pi^5 + b_{63} \pi^4) x^{15} + (b_{46} \pi^3 + a_{30} \pi^2) x^{14} + (b_{77} \pi^5 + b_{61} \pi^4) x^{13} + a_{12} \pi x^{12} + (b_{75} \pi^5 + b_{59} \pi^4) x^{11} + b_{42} \pi^3 x^{10} + (b_{73} \pi^5 + b_{57} \pi^4) x^9 + b_{8} \pi x^8 + (b_{71} \pi^5 + a_{55} \pi^4) x^7 + b_{38} \pi^3 x^6 + b_{69} \pi^5 x^5 + b_{67} \pi^5 x^3 + b_{34} \pi^3 x^2 + b_{65} \pi^5 x + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $131072$
2.1.4.6a1.1-1.8.70o $2$ $8$ $1$ $8$ $70$ 2.1.4.6a1.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[5, 7, 11]$ $\langle\frac{5}{2}, \frac{19}{4}, \frac{63}{8}\rangle$ $(5, 9, 25)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + b_{71} \pi^9 + a_{63} \pi^8) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + a_{38} \pi^5) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10} + b_{69} \pi^9) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10} + b_{67} \pi^9) x^3 + (b_{50} \pi^7 + b_{42} \pi^6) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10} + b_{65} \pi^9) x + c_{88} \pi^{12} + c_{56} \pi^8 + c_{40} \pi^6 + \pi$ $8$ $0$ $262144$
2.1.4.6a1.2-1.8.70o $2$ $8$ $1$ $8$ $70$ 2.1.4.6a1.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[5, 7, 11]$ $\langle\frac{5}{2}, \frac{19}{4}, \frac{63}{8}\rangle$ $(5, 9, 25)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + b_{71} \pi^9 + a_{63} \pi^8) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + a_{38} \pi^5) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10} + b_{69} \pi^9) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10} + b_{67} \pi^9) x^3 + (b_{50} \pi^7 + b_{42} \pi^6) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10} + b_{65} \pi^9) x + c_{88} \pi^{12} + c_{56} \pi^8 + c_{40} \pi^6 + \pi$ $8$ $0$ $262144$
2.1.4.6a2.1-1.8.70o $2$ $8$ $1$ $8$ $70$ 2.1.4.6a2.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[5, 7, 11]$ $\langle\frac{5}{2}, \frac{19}{4}, \frac{63}{8}\rangle$ $(5, 9, 25)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + b_{71} \pi^9 + a_{63} \pi^8) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + a_{38} \pi^5) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10} + b_{69} \pi^9) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10} + b_{67} \pi^9) x^3 + (b_{50} \pi^7 + b_{42} \pi^6) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10} + b_{65} \pi^9) x + c_{88} \pi^{12} + c_{56} \pi^8 + c_{40} \pi^6 + \pi$ $8$ $0$ $262144$
2.1.4.8b1.1-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.8b1.2-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.8b1.3-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.3 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.8b1.4-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.4 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.8b1.5-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.5 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.8b1.6-1.8.54l $2$ $8$ $1$ $8$ $54$ 2.1.4.8b1.6 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 5, 9]$ $\langle\frac{1}{2}, \frac{11}{4}, \frac{47}{8}\rangle$ $(1, 9, 25)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{38} \pi^5 + b_{30} \pi^4 + a_{22} \pi^3) x^6 + (b_{69} \pi^9 + b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{67} \pi^9 + b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{34} \pi^5 + b_{26} \pi^4) x^2 + (b_{65} \pi^9 + b_{57} \pi^8 + b_{49} \pi^7) x + c_{72} \pi^{10} + c_{40} \pi^6 + c_{8} \pi^2 + \pi$ $8$ $0$ $65536$
2.1.4.9a1.1-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.2-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.3-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.3 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.4-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.4 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.5-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.5 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.6-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.6 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.7-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.7 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.9a1.8-1.8.46l $2$ $8$ $1$ $8$ $46$ 2.1.4.9a1.8 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 3, 8]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{39}{8}\rangle$ $(1, 5, 25)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + b_{47} \pi^6 + a_{39} \pi^5) x^7 + (b_{22} \pi^3 + a_{14} \pi^2) x^6 + (b_{61} \pi^8 + b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7 + b_{43} \pi^6) x^3 + b_{18} \pi^3 x^2 + (b_{57} \pi^8 + b_{49} \pi^7 + b_{41} \pi^6) x + c_{64} \pi^9 + c_{24} \pi^4 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.10a1.1-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.2-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.3-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.3 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.4-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.4 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.5-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.5 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.6-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.6 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.7-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.7 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.10a1.8-1.8.38c $2$ $8$ $1$ $8$ $38$ 2.1.4.10a1.8 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[1, 1, 7]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{31}{8}\rangle$ $(1, 1, 25)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6 + b_{39} \pi^5 + a_{31} \pi^4) x^7 + a_{6} \pi x^6 + (b_{53} \pi^7 + b_{45} \pi^6 + b_{37} \pi^5) x^5 + b_{4} \pi x^4 + (b_{51} \pi^7 + b_{43} \pi^6 + b_{35} \pi^5) x^3 + (b_{49} \pi^7 + b_{41} \pi^6 + b_{33} \pi^5) x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.8.18b1.1-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.2-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.3-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.3 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.4-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.4 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.5-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.5 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.6-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.6 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.7-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.7 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.8-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.8 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.9-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.9 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.10-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.10 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.11-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.11 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b1.12-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b1.12 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.1-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.1 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.2-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.2 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.3-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.3 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.4-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.4 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.5-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.5 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
2.1.8.18b2.6-1.4.46c $2$ $4$ $1$ $4$ $46$ 2.1.8.18b2.6 $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ $[9, 17]$ $\langle\frac{9}{2}, \frac{43}{4}\rangle$ $(9, 25)$ $x^4 + (b_{67} \pi^{17} + b_{63} \pi^{16} + b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7 + b_{22} \pi^6 + a_{18} \pi^5) x^2 + (b_{65} \pi^{17} + b_{61} \pi^{16} + b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{68} \pi^{18} + c_{36} \pi^{10} + \pi$ $4$ $0$ $65536$
Next   displayed columns for results