Learn more

Refine search


Results (1-50 of 120 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.114bw $2$ $32$ $1$ $32$ $114$ $\Q_{2}$ $[2, 2, 3, 4, 4]$ $[1, 1, 2, 3, 3]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}, \frac{35}{16}, \frac{83}{32}\rangle$ $(1, 1, 5, 13, 13)$ $x^{32} + 8 b_{95} x^{31} + 8 b_{94} x^{30} + 8 b_{93} x^{29} + 4 b_{60} x^{28} + 8 b_{91} x^{27} + 8 b_{90} x^{26} + 8 b_{89} x^{25} + 2 a_{24} x^{24} + 8 b_{87} x^{23} + 8 b_{86} x^{22} + 8 b_{85} x^{21} + 4 b_{52} x^{20} + 8 a_{83} x^{19} + 8 b_{82} x^{18} + 2 b_{16} x^{16} + 8 b_{78} x^{14} + 4 a_{44} x^{12} + 8 b_{74} x^{10} + 8 b_{70} x^6 + 4 c_{32} + 8 c_{64} + 16 c_{96} + 2$ $8$ $0$ $65536$
2.1.2.2a1.1-1.16.82bn $2$ $16$ $1$ $16$ $82$ $\Q_{2}(\sqrt{-1})$ $[2, 2, 3, 4, 4]$ $[1, 3, 5, 5]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{27}{8}, \frac{67}{16}\rangle$ $(1, 5, 13, 13)$ $x^{16} + b_{79} \pi^5 x^{15} + (b_{78} \pi^5 + b_{62} \pi^4) x^{14} + b_{77} \pi^5 x^{13} + (b_{44} \pi^3 + a_{28} \pi^2) x^{12} + b_{75} \pi^5 x^{11} + (b_{74} \pi^5 + b_{58} \pi^4) x^{10} + b_{73} \pi^5 x^9 + a_{8} \pi x^8 + b_{71} \pi^5 x^7 + (b_{70} \pi^5 + b_{54} \pi^4) x^6 + b_{69} \pi^5 x^5 + b_{36} \pi^3 x^4 + a_{67} \pi^5 x^3 + b_{66} \pi^5 x^2 + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $32768$
2.1.2.2a1.2-1.16.82bn $2$ $16$ $1$ $16$ $82$ $\Q_{2}(\sqrt{-5})$ $[2, 2, 3, 4, 4]$ $[1, 3, 5, 5]$ $\langle\frac{1}{2}, \frac{7}{4}, \frac{27}{8}, \frac{67}{16}\rangle$ $(1, 5, 13, 13)$ $x^{16} + b_{79} \pi^5 x^{15} + (b_{78} \pi^5 + b_{62} \pi^4) x^{14} + b_{77} \pi^5 x^{13} + (b_{44} \pi^3 + a_{28} \pi^2) x^{12} + b_{75} \pi^5 x^{11} + (b_{74} \pi^5 + b_{58} \pi^4) x^{10} + b_{73} \pi^5 x^9 + a_{8} \pi x^8 + b_{71} \pi^5 x^7 + (b_{70} \pi^5 + b_{54} \pi^4) x^6 + b_{69} \pi^5 x^5 + b_{36} \pi^3 x^4 + a_{67} \pi^5 x^3 + b_{66} \pi^5 x^2 + c_{80} \pi^6 + c_{48} \pi^4 + c_{16} \pi^2 + \pi$ $8$ $0$ $32768$
2.1.2.3a1.1-1.16.66j $2$ $16$ $1$ $16$ $66$ $\Q_{2}(\sqrt{-2})$ $[2, 2, 3, 4, 4]$ $[1, 1, 4, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}, \frac{51}{16}\rangle$ $(1, 1, 13, 13)$ $x^{16} + b_{63} \pi^4 x^{15} + (b_{62} \pi^4 + b_{46} \pi^3) x^{14} + b_{61} \pi^4 x^{13} + a_{12} \pi x^{12} + b_{59} \pi^4 x^{11} + (b_{58} \pi^4 + b_{42} \pi^3) x^{10} + b_{57} \pi^4 x^9 + b_{8} \pi x^8 + b_{55} \pi^4 x^7 + (b_{54} \pi^4 + b_{38} \pi^3) x^6 + b_{53} \pi^4 x^5 + a_{51} \pi^4 x^3 + b_{50} \pi^4 x^2 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $4$ $0$ $16384$
2.1.2.3a1.2-1.16.66j $2$ $16$ $1$ $16$ $66$ $\Q_{2}(\sqrt{-2\cdot 5})$ $[2, 2, 3, 4, 4]$ $[1, 1, 4, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}, \frac{51}{16}\rangle$ $(1, 1, 13, 13)$ $x^{16} + b_{63} \pi^4 x^{15} + (b_{62} \pi^4 + b_{46} \pi^3) x^{14} + b_{61} \pi^4 x^{13} + a_{12} \pi x^{12} + b_{59} \pi^4 x^{11} + (b_{58} \pi^4 + b_{42} \pi^3) x^{10} + b_{57} \pi^4 x^9 + b_{8} \pi x^8 + b_{55} \pi^4 x^7 + (b_{54} \pi^4 + b_{38} \pi^3) x^6 + b_{53} \pi^4 x^5 + a_{51} \pi^4 x^3 + b_{50} \pi^4 x^2 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $4$ $0$ $16384$
2.1.2.3a1.3-1.16.66j $2$ $16$ $1$ $16$ $66$ $\Q_{2}(\sqrt{2})$ $[2, 2, 3, 4, 4]$ $[1, 1, 4, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}, \frac{51}{16}\rangle$ $(1, 1, 13, 13)$ $x^{16} + b_{63} \pi^4 x^{15} + (b_{62} \pi^4 + b_{46} \pi^3) x^{14} + b_{61} \pi^4 x^{13} + a_{12} \pi x^{12} + b_{59} \pi^4 x^{11} + (b_{58} \pi^4 + b_{42} \pi^3) x^{10} + b_{57} \pi^4 x^9 + b_{8} \pi x^8 + b_{55} \pi^4 x^7 + (b_{54} \pi^4 + b_{38} \pi^3) x^6 + b_{53} \pi^4 x^5 + a_{51} \pi^4 x^3 + b_{50} \pi^4 x^2 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $4$ $0$ $16384$
2.1.2.3a1.4-1.16.66j $2$ $16$ $1$ $16$ $66$ $\Q_{2}(\sqrt{2\cdot 5})$ $[2, 2, 3, 4, 4]$ $[1, 1, 4, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}, \frac{51}{16}\rangle$ $(1, 1, 13, 13)$ $x^{16} + b_{63} \pi^4 x^{15} + (b_{62} \pi^4 + b_{46} \pi^3) x^{14} + b_{61} \pi^4 x^{13} + a_{12} \pi x^{12} + b_{59} \pi^4 x^{11} + (b_{58} \pi^4 + b_{42} \pi^3) x^{10} + b_{57} \pi^4 x^9 + b_{8} \pi x^8 + b_{55} \pi^4 x^7 + (b_{54} \pi^4 + b_{38} \pi^3) x^6 + b_{53} \pi^4 x^5 + a_{51} \pi^4 x^3 + b_{50} \pi^4 x^2 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $4$ $0$ $16384$
2.1.4.6a1.1-1.8.66g $2$ $8$ $1$ $8$ $66$ 2.1.4.6a1.1 $[2, 2, 3, 4, 4]$ $[5, 9, 9]$ $\langle\frac{5}{2}, \frac{23}{4}, \frac{59}{8}\rangle$ $(5, 13, 13)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8) x^7 + (b_{70} \pi^9 + b_{62} \pi^8 + b_{54} \pi^7 + b_{46} \pi^6) x^6 + (b_{69} \pi^9 + b_{61} \pi^8) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{67} \pi^9 + a_{59} \pi^8) x^3 + (b_{66} \pi^9 + b_{58} \pi^8 + b_{50} \pi^7) x^2 + b_{65} \pi^9 x + c_{72} \pi^{10} + c_{40} \pi^6 + \pi$ $4$ $0$ $32768$
2.1.4.6a1.2-1.8.66g $2$ $8$ $1$ $8$ $66$ 2.1.4.6a1.2 $[2, 2, 3, 4, 4]$ $[5, 9, 9]$ $\langle\frac{5}{2}, \frac{23}{4}, \frac{59}{8}\rangle$ $(5, 13, 13)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8) x^7 + (b_{70} \pi^9 + b_{62} \pi^8 + b_{54} \pi^7 + b_{46} \pi^6) x^6 + (b_{69} \pi^9 + b_{61} \pi^8) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{67} \pi^9 + a_{59} \pi^8) x^3 + (b_{66} \pi^9 + b_{58} \pi^8 + b_{50} \pi^7) x^2 + b_{65} \pi^9 x + c_{72} \pi^{10} + c_{40} \pi^6 + \pi$ $4$ $0$ $32768$
2.1.4.6a2.1-1.8.66g $2$ $8$ $1$ $8$ $66$ 2.1.4.6a2.1 $[2, 2, 3, 4, 4]$ $[5, 9, 9]$ $\langle\frac{5}{2}, \frac{23}{4}, \frac{59}{8}\rangle$ $(5, 13, 13)$ $x^8 + (b_{71} \pi^9 + b_{63} \pi^8) x^7 + (b_{70} \pi^9 + b_{62} \pi^8 + b_{54} \pi^7 + b_{46} \pi^6) x^6 + (b_{69} \pi^9 + b_{61} \pi^8) x^5 + (b_{36} \pi^5 + b_{28} \pi^4 + a_{20} \pi^3) x^4 + (b_{67} \pi^9 + a_{59} \pi^8) x^3 + (b_{66} \pi^9 + b_{58} \pi^8 + b_{50} \pi^7) x^2 + b_{65} \pi^9 x + c_{72} \pi^{10} + c_{40} \pi^6 + \pi$ $4$ $0$ $32768$
2.1.4.8b1.1-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.1 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.8b1.2-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.2 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.8b1.3-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.3 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.8b1.4-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.4 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.8b1.5-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.5 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.8b1.6-1.8.50h $2$ $8$ $1$ $8$ $50$ 2.1.4.8b1.6 $[2, 2, 3, 4, 4]$ $[1, 7, 7]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{43}{8}\rangle$ $(1, 13, 13)$ $x^8 + (b_{55} \pi^7 + b_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + b_{30} \pi^4) x^6 + (b_{53} \pi^7 + b_{45} \pi^6) x^5 + a_{4} \pi x^4 + (b_{51} \pi^7 + a_{43} \pi^6) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + b_{49} \pi^7 x + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $4$ $0$ $8192$
2.1.4.11a1.1-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.1 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.2-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.2 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.3-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.3 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.4-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.4 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.5-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.5 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.6-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.6 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.7-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.7 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.8-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.8 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.9-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.9 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.10-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.10 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.11-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.11 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.12-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.12 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.13-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.13 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.14-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.14 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.15-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.15 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.16-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.16 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.17-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.17 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.18-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.18 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.19-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.19 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.4.11a1.20-1.8.26c $2$ $8$ $1$ $8$ $26$ 2.1.4.11a1.20 $[2, 2, 3, 4, 4]$ $[1, 1, 4]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{19}{8}\rangle$ $(1, 1, 13)$ $x^8 + (b_{31} \pi^4 + b_{23} \pi^3) x^7 + a_{6} \pi x^6 + (b_{29} \pi^4 + b_{21} \pi^3) x^5 + b_{4} \pi x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + b_{25} \pi^4 x + c_{32} \pi^5 + c_{8} \pi^2 + \pi$ $4$ $0$ $128$
2.1.8.18b1.1-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.1 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.2-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.2 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.3-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.3 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.4-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.4 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.5-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.5 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.6-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.6 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.7-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.7 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.8-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.8 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.9-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.9 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.10-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.10 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.11-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.11 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b1.12-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b1.12 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b2.1-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b2.1 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
2.1.8.18b2.2-1.4.42a $2$ $4$ $1$ $4$ $42$ 2.1.8.18b2.2 $[2, 2, 3, 4, 4]$ $[13, 13]$ $\langle\frac{13}{2}, \frac{39}{4}\rangle$ $(13, 13)$ $x^4 + (b_{51} \pi^{13} + b_{47} \pi^{12} + b_{43} \pi^{11} + a_{39} \pi^{10}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + b_{26} \pi^7) x^2 + (b_{49} \pi^{13} + b_{45} \pi^{12} + b_{41} \pi^{11}) x + c_{52} \pi^{14} + \pi$ $2$ $0$ $8192$
Next   displayed columns for results