Learn more

Note: Search results may be incomplete due to uncomputed quantities: Hidden content (1054941 objects)

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.60j1.1 $x^{16} + 8 x^{13} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.2 $x^{16} + 8 x^{15} + 8 x^{13} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.3 $x^{16} + 8 x^{14} + 8 x^{13} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.4 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.5 $x^{16} + 8 x^{13} + 8 x^{12} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.6 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.7 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.8 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.25 $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.26 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.27 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.28 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.29 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.30 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.31 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.32 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.33 $x^{16} + 8 x^{13} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.34 $x^{16} + 8 x^{15} + 8 x^{13} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.35 $x^{16} + 8 x^{14} + 8 x^{13} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.36 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.37 $x^{16} + 8 x^{13} + 8 x^{12} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.38 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.39 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.40 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.57 $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.58 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.59 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.60 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.61 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.62 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.63 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.64 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:D_{12}$ (as 16T1313) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.73 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.74 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.77 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.78 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.81 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.82 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.83 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.84 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.85 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.86 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.87 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.88 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.105 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.106 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.107 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.108 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.109 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.110 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
Next   displayed columns for results