Properties

Label 2.1.16.60j1.35
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(60\)
Galois group $C_2^6:D_{12}$ (as 16T1313)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{14} + 8 x^{13} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $60$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, \frac{49}{12}, \frac{49}{12}]$
Visible Swan slopes:$[2,3,\frac{37}{12},\frac{37}{12}]$
Means:$\langle1, 2, \frac{61}{24}, \frac{45}{16}\rangle$
Rams:$(2, 4, \frac{13}{3}, \frac{13}{3})$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.11a1.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{14} + 8 x^{13} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[45, 45, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $1536$
Galois group: $C_2^6:D_{12}$ (as 16T1313)
Inertia group: $C_2^6:C_{12}$ (as 16T1041)
Wild inertia group: $C_2^6:C_4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]$
Galois mean slope: $3.9244791666666665$
Galois splitting model: $x^{16} - 8 x^{13} - 24 x^{12} + 16 x^{11} + 144 x^{10} + 352 x^{9} + 172 x^{8} - 1408 x^{7} - 5664 x^{6} - 12272 x^{5} - 16168 x^{4} - 12800 x^{3} - 4304 x^{2} + 2096 x + 1742$ Copy content Toggle raw display