Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.10.19a1.3 |
$10$ |
$x^{10} + 4 x^{9} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, 3]_{5}^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},2]_{5}^{4}$ |
$[\frac{6}{5},\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.4 |
$10$ |
$x^{10} + 4 x^{9} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, 3]_{5}^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},2]_{5}^{4}$ |
$[\frac{6}{5},\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.5 |
$10$ |
$x^{10} + 4 x^{7} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.6 |
$10$ |
$x^{10} + 4 x^{7} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.7 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.8 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.11 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, 3]_{5}^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},2]_{5}^{4}$ |
$[\frac{6}{5},\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.12 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, 3]_{5}^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},2]_{5}^{4}$ |
$[\frac{6}{5},\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ |
$[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.13 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.14 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.15 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.16 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{8}{5}, \frac{8}{5}, \frac{8}{5}, \frac{8}{5}, 3]_{5}^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},2]_{5}^{4}$ |
$[\frac{8}{5},\frac{8}{5},\frac{8}{5},\frac{8}{5}]^{4}$ |
$[\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.17 |
$10$ |
$x^{10} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.18 |
$10$ |
$x^{10} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.19 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.20 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.21 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.22 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.23 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.24 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.25 |
$10$ |
$x^{10} + 4 x^{5} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{5} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.26 |
$10$ |
$x^{10} + 4 x^{5} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{5} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.27 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.28 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.29 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.30 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.31 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.32 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, 3]_{5}^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5},2]_{5}^{4}$ |
$[\frac{12}{5},\frac{12}{5},\frac{12}{5},\frac{12}{5}]^{4}$ |
$[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.33 |
$10$ |
$x^{10} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.34 |
$10$ |
$x^{10} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.35 |
$10$ |
$x^{10} + 4 x^{9} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.36 |
$10$ |
$x^{10} + 4 x^{9} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.37 |
$10$ |
$x^{10} + 4 x^{7} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.38 |
$10$ |
$x^{10} + 4 x^{7} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.39 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.40 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.41 |
$10$ |
$x^{10} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{5} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.42 |
$10$ |
$x^{10} + 4 x^{5} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{5} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.43 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.44 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{5} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.45 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.46 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{5} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.47 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.48 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.49 |
$10$ |
$x^{10} + 4 x^{3} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{3} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.50 |
$10$ |
$x^{10} + 4 x^{3} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{3} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.51 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.52 |
$10$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{9} + 4 x^{3} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.53 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 2$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 2$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |
2.1.10.19a1.54 |
$10$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 10$ |
$2$ |
$1$ |
$10$ |
$19$ |
$((C_2^4 : C_5):C_4)\times C_2$ (as 10T29) |
$4$ |
$5$ |
$[3]$ |
$[2]$ |
$[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]_{5}^{4}$ |
$[\frac{14}{5},\frac{14}{5},\frac{14}{5},\frac{14}{5}]^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$2$ |
$t + 1$ |
$x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 10$ |
$[10, 0]$ |
$[4, 1]$ |
$z^8 + z^6 + 1,z + 1$ |
$[5, 15]$ |