Properties

Label 2.1.10.19a1.53
Base \(\Q_{2}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(19\)
Galois group $((C_2^4 : C_5):C_4)\times C_2$ (as 10T29)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $19$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(10)$
Jump set:$[5, 15]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^6 + 1$,$z + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[10, 0]$

Invariants of the Galois closure

Galois degree: $640$
Galois group: $C_2\wr F_5$ (as 10T29)
Inertia group: $C_2\wr C_5$ (as 10T14)
Wild inertia group: $C_2^5$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\frac{14}{5}, \frac{14}{5}, \frac{14}{5}, \frac{14}{5}, 3]$
Galois Swan slopes: $[\frac{9}{5},\frac{9}{5},\frac{9}{5},\frac{9}{5},2]$
Galois mean slope: $2.8375$
Galois splitting model:$x^{10} + 4 x^{8} + 10 x^{6} + 14 x^{4} + 10 x^{2} + 2$