The results below are complete, since the LMFDB contains all p-adic fields of degree at most 23 and residue characteristic at most 199
Refine search
Results (5 matches)
Download displayed columns for results| Label | Polynomial | $p$ | $f$ | $e$ | $c$ | Galois group | Artin slope content |
|---|---|---|---|---|---|---|---|
| 103.2.8.14a1.1 | $( x^{2} + 102 x + 5 )^{8} + 103 x$ | $103$ | $2$ | $8$ | $14$ | $C_8.C_8$ (as 16T124) | $[\ ]_{8}^{8}$ |
| 103.2.8.14a1.2 | $( x^{2} + 102 x + 5 )^{8} + 103$ | $103$ | $2$ | $8$ | $14$ | $D_{8}$ (as 16T13) | $[\ ]_{8}^{2}$ |
| 103.2.8.14a1.3 | $( x^{2} + 102 x + 5 )^{8} + 9682 x + 2060$ | $103$ | $2$ | $8$ | $14$ | $Q_{16}$ (as 16T14) | $[\ ]_{8}^{2}$ |
| 103.2.8.14a1.4 | $( x^{2} + 102 x + 5 )^{8} + 1133 x + 4635$ | $103$ | $2$ | $8$ | $14$ | $C_8.C_8$ (as 16T124) | $[\ ]_{8}^{8}$ |
| 103.2.8.14a1.5 | $( x^{2} + 102 x + 5 )^{8} + 103 x + 10094$ | $103$ | $2$ | $8$ | $14$ | $C_8.C_4$ (as 16T49) | $[\ ]_{8}^{4}$ |