Properties

Label 103.2.8.14a1.1
Base \(\Q_{103}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(14\)
Galois group $C_8.C_8$ (as 16T124)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 102 x + 5 )^{8} + 103 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{103}(\sqrt{3})$
Root number: $-1$
$\Aut(K/\Q_{103})$: $C_8$
This field is not Galois over $\Q_{103}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$10608 = (103^{ 2 } - 1)$

Intermediate fields

$\Q_{103}(\sqrt{3})$, 103.2.2.2a1.1, 103.2.4.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{103}(\sqrt{3})$ $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{2} + 102 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 103 t + 2987 \) $\ \in\Q_{103}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 70 z^3 + 56 z^2 + 28 z + 8$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_8.C_8$ (as 16T124)
Inertia group: Intransitive group isomorphic to $C_8$
Wild inertia group: $C_1$
Galois unramified degree: $8$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:not computed