Properties

Label 97.8.1.0a1.1
Base \(\Q_{97}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 65 x^{3} + x^{2} + 32 x + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{97}$
Degree $d$: $8$
Ramification index $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{97}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{97})$ $=$ $\Gal(K/\Q_{97})$: $C_8$
This field is Galois and abelian over $\Q_{97}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$7837433594376960 = (97^{ 8 } - 1)$

Intermediate fields

$\Q_{97}(\sqrt{5})$, 97.4.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:97.8.1.0a1.1 $\cong \Q_{97}(t)$ where $t$ is a root of \( x^{8} + 65 x^{3} + x^{2} + 32 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 97 \) $\ \in\Q_{97}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_8$ (as 8T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $8$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$