Defining polynomial
|
\(x^{8} + 65 x^{3} + x^{2} + 32 x + 5\)
|
Invariants
| Base field: | $\Q_{97}$ |
| Degree $d$: | $8$ |
| Ramification index $e$: | $1$ |
| Residue field degree $f$: | $8$ |
| Discriminant exponent $c$: | $0$ |
| Discriminant root field: | $\Q_{97}(\sqrt{5})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{97})$ $=$ $\Gal(K/\Q_{97})$: | $C_8$ |
| This field is Galois and abelian over $\Q_{97}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $7837433594376960 = (97^{ 8 } - 1)$ |
Intermediate fields
| $\Q_{97}(\sqrt{5})$, 97.4.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 97.8.1.0a1.1 $\cong \Q_{97}(t)$ where $t$ is a root of
\( x^{8} + 65 x^{3} + x^{2} + 32 x + 5 \)
|
| Relative Eisenstein polynomial: |
\( x - 97 \)
$\ \in\Q_{97}(t)[x]$
|
Ramification polygon
The ramification polygon is trivial for unramified extensions.
Invariants of the Galois closure
| Galois degree: | $8$ |
| Galois group: | $C_8$ (as 8T1) |
| Inertia group: | trivial |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $8$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.0$ |
| Galois splitting model: | $x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$ |