Properties

Label 7.4.4.12a1.2
Base \(\Q_{7}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(12\)
Galois group $C_{16} : C_2$ (as 16T22)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 5 x^{2} + 4 x + 3 )^{4} + 7 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_8$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$2400 = (7^{ 4 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.4.1.0a1.1, 7.4.2.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:7.4.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{4} + 5 x^{2} + 4 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 7 t^{3} \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $\OD_{32}$ (as 16T22)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $8$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:not computed