Defining polynomial
$( x^{4} + 5 x^{2} + 4 x + 3 )^{4} + 7 x$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $1$ |
$\Aut(K/\Q_{7})$: | $C_8$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $2400 = (7^{ 4 } - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{3})$, 7.4.1.0a1.1, 7.4.2.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 7.4.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{4} + 5 x^{2} + 4 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 7 t^{3} \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^3 + 4 z^2 + 6 z + 4$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $32$ |
Galois group: | $\OD_{32}$ (as 16T22) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $8$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.75$ |
Galois splitting model: | not computed |