Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $C_{16} : C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,12,7,10,5,16,3,14,2,11,8,9,6,15,4,13), (1,12,8,9,5,16,4,13,2,11,7,10,6,15,3,14) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_8$ x 2, $C_4\times C_2$ 16: $C_8\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
32T8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 6, 7, 2, 4, 5, 8)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 3, 6, 7, 2, 4, 5, 8)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 4, 6, 8, 2, 3, 5, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,16,13,11,10,15,14,12)$ |
| $ 16 $ | $2$ | $16$ | $( 1, 9, 3,12, 6,14, 7,15, 2,10, 4,11, 5,13, 8,16)$ |
| $ 16 $ | $2$ | $16$ | $( 1, 9, 4,11, 6,14, 8,16, 2,10, 3,12, 5,13, 7,15)$ |
| $ 16 $ | $2$ | $16$ | $( 1,11, 7, 9, 5,15, 3,13, 2,12, 8,10, 6,16, 4,14)$ |
| $ 16 $ | $2$ | $16$ | $( 1,11, 8,10, 5,15, 4,14, 2,12, 7, 9, 6,16, 3,13)$ |
| $ 16 $ | $2$ | $16$ | $( 1,13, 3,16, 6, 9, 7,12, 2,14, 4,15, 5,10, 8,11)$ |
| $ 16 $ | $2$ | $16$ | $( 1,13, 4,15, 6, 9, 8,11, 2,14, 3,16, 5,10, 7,12)$ |
| $ 16 $ | $2$ | $16$ | $( 1,15, 7,13, 5,12, 3,10, 2,16, 8,14, 6,11, 4, 9)$ |
| $ 16 $ | $2$ | $16$ | $( 1,15, 8,14, 5,12, 4, 9, 2,16, 7,13, 6,11, 3,10)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 17] |
| Character table: |
2 5 4 5 4 5 5 5 4 5 5 4 5 4 4 4 4 4 4 4
1a 2a 2b 8a 8b 8c 4a 4b 4c 8d 8e 8f 16a 16b 16c 16d 16e 16f 16g
2P 1a 1a 1a 4c 4c 4c 2b 2b 2b 4a 4a 4a 8b 8c 8d 8f 8b 8c 8d
3P 1a 2a 2b 8e 8d 8f 4c 4b 4a 8b 8a 8c 16c 16d 16a 16b 16g 16h 16e
5P 1a 2a 2b 8a 8c 8b 4a 4b 4c 8f 8e 8d 16f 16e 16h 16g 16b 16a 16d
7P 1a 2a 2b 8e 8f 8d 4c 4b 4a 8c 8a 8b 16h 16g 16f 16e 16d 16c 16b
11P 1a 2a 2b 8e 8d 8f 4c 4b 4a 8b 8a 8c 16c 16d 16a 16b 16g 16h 16e
13P 1a 2a 2b 8a 8c 8b 4a 4b 4c 8f 8e 8d 16f 16e 16h 16g 16b 16a 16d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1
X.3 1 -1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.5 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 A -A -A A -A A A
X.6 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 -A A A -A A -A -A
X.7 1 -1 1 A -A -A -1 1 -1 A -A A D -D -/D /D D -D -/D
X.8 1 -1 1 A -A -A -1 1 -1 A -A A -D D /D -/D -D D /D
X.9 1 -1 1 -A A A -1 1 -1 -A A -A -/D /D D -D -/D /D D
X.10 1 -1 1 -A A A -1 1 -1 -A A -A /D -/D -D D /D -/D -D
X.11 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 A A -A -A A A -A
X.12 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -A -A A A -A -A A
X.13 1 1 1 A A A -1 -1 -1 -A -A -A -/D -/D D D /D /D -D
X.14 1 1 1 A A A -1 -1 -1 -A -A -A /D /D -D -D -/D -/D D
X.15 1 1 1 -A -A -A -1 -1 -1 A A A D D -/D -/D -D -D /D
X.16 1 1 1 -A -A -A -1 -1 -1 A A A -D -D /D /D D D -/D
X.17 2 . -2 . B -B C . -C -/B . /B . . . . . . .
X.18 2 . -2 . -/B /B -C . C B . -B . . . . . . .
X.19 2 . -2 . /B -/B -C . C -B . B . . . . . . .
X.20 2 . -2 . -B B C . -C /B . -/B . . . . . . .
2 4
16h
2P 8f
3P 16f
5P 16c
7P 16a
11P 16f
13P 16c
X.1 1
X.2 -1
X.3 1
X.4 -1
X.5 -A
X.6 A
X.7 /D
X.8 -/D
X.9 -D
X.10 D
X.11 -A
X.12 A
X.13 -D
X.14 D
X.15 /D
X.16 -/D
X.17 .
X.18 .
X.19 .
X.20 .
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(8)
C = -2*E(4)
= -2*Sqrt(-1) = -2i
D = -E(8)
|