Properties

Label 7.3.7.39a1.43
Base \(\Q_{7}\)
Degree \(21\)
e \(7\)
f \(3\)
c \(39\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 6 x^{2} + 4 )^{7} + \left(147 x + 98\right) ( x^{3} + 6 x^{2} + 4 ) + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $21$
Ramification index $e$: $7$
Residue field degree $f$: $3$
Discriminant exponent $c$: $39$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $i$
$\Aut(K/\Q_{7})$: $C_1$
Visible Artin slopes:$[\frac{13}{6}]$
Visible Swan slopes:$[\frac{7}{6}]$
Means:$\langle1\rangle$
Rams:$(\frac{7}{6})$
Jump set:undefined
Roots of unity:$342 = (7^{ 3 } - 1)$

Intermediate fields

7.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} + 6 x^{2} + 4 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + \left(147 t + 98\right) x + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (3 t^2 + 6 t + 6)$
Associated inertia:$1$
Indices of inseparability:$[7, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed