Defining polynomial
$( x^{3} + 6 x^{2} + 4 )^{7} + \left(147 x + 98\right) ( x^{3} + 6 x^{2} + 4 ) + 7$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $21$ |
Ramification index $e$: | $7$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $39$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{7})$: | $C_1$ |
Visible Artin slopes: | $[\frac{13}{6}]$ |
Visible Swan slopes: | $[\frac{7}{6}]$ |
Means: | $\langle1\rangle$ |
Rams: | $(\frac{7}{6})$ |
Jump set: | undefined |
Roots of unity: | $342 = (7^{ 3 } - 1)$ |
Intermediate fields
7.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{3} + 6 x^{2} + 4 \)
|
Relative Eisenstein polynomial: |
\( x^{7} + \left(147 t + 98\right) x + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (3 t^2 + 6 t + 6)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[7, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |