Defining polynomial
$( x^{3} + 6 x^{2} + 4 )^{7} + 35 ( x^{3} + 6 x^{2} + 4 )^{3} + 7$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $21$ |
Ramification index $e$: | $7$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $27$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{7})$: | $C_3$ |
Visible Artin slopes: | $[\frac{3}{2}]$ |
Visible Swan slopes: | $[\frac{1}{2}]$ |
Means: | $\langle\frac{3}{7}\rangle$ |
Rams: | $(\frac{1}{2})$ |
Jump set: | undefined |
Roots of unity: | $342 = (7^{ 3 } - 1)$ |
Intermediate fields
7.3.1.0a1.1, 7.1.7.9a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{3} + 6 x^{2} + 4 \)
|
Relative Eisenstein polynomial: |
\( x^{7} + 35 x^{3} + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^3 + (6 t^2 + t + 6)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[3, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |