Properties

Label 7.3.4.9a1.1
Base \(\Q_{7}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 6 x^{2} + 4 )^{4} + 7 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $12$
Ramification index $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $i$
$\Aut(K/\Q_{7})$: $C_6$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$342 = (7^{ 3 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{7})$, 7.3.1.0a1.1, 7.1.4.3a1.2, 7.3.2.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} + 6 x^{2} + 4 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 7 t \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $24$
Galois group: $C_3\times D_4$ (as 12T14)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model: $x^{12} - 6 x^{11} + 15 x^{10} - 16 x^{9} + 12 x^{8} - 66 x^{7} - 67 x^{6} + 942 x^{5} - 3261 x^{4} + 4534 x^{3} - 408 x^{2} - 1692 x - 159$ Copy content Toggle raw display