Defining polynomial
$( x^{3} + 6 x^{2} + 4 )^{4} + 7 x$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{7})$: | $C_6$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $342 = (7^{ 3 } - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{7})$, 7.3.1.0a1.1, 7.1.4.3a1.2, 7.3.2.3a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{3} + 6 x^{2} + 4 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 7 t \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^3 + 4 z^2 + 6 z + 4$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $24$ |
Galois group: | $C_3\times D_4$ (as 12T14) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $6$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.75$ |
Galois splitting model: |
$x^{12} - 6 x^{11} + 15 x^{10} - 16 x^{9} + 12 x^{8} - 66 x^{7} - 67 x^{6} + 942 x^{5} - 3261 x^{4} + 4534 x^{3} - 408 x^{2} - 1692 x - 159$
|