Properties

Label 7.2.7.22a9.1
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(22\)
Galois group $D_7:F_7$ (as 14T24)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 6 x + 3 )^{7} + \left(28 x + 14\right) ( x^{2} + 6 x + 3 )^{5} + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification index $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{11}{6}]$
Visible Swan slopes:$[\frac{5}{6}]$
Means:$\langle\frac{5}{7}\rangle$
Rams:$(\frac{5}{6})$
Jump set:undefined
Roots of unity:$48 = (7^{ 2 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + \left(21 t + 42\right) x^{5} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (3 t + 5)$
Associated inertia:$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois degree: $588$
Galois group: $D_7:F_7$ (as 14T24)
Inertia group: Intransitive group isomorphic to $C_7:F_7$
Wild inertia group: $C_7^2$
Galois unramified degree: $2$
Galois tame degree: $6$
Galois Artin slopes: $[\frac{11}{6}, \frac{11}{6}]$
Galois Swan slopes: $[\frac{5}{6},\frac{5}{6}]$
Galois mean slope: $1.8129251700680271$
Galois splitting model: $x^{14} - 42 x^{11} + 231 x^{10} - 602 x^{9} - 3234 x^{8} + 8831 x^{7} + 75509 x^{6} - 194922 x^{5} + 302603 x^{4} - 631687 x^{3} + 425859 x^{2} + 455441 x - 468537$ Copy content Toggle raw display