Defining polynomial
$( x^{2} + 6 x + 3 )^{7} + \left(14 x + 42\right) ( x^{2} + 6 x + 3 )^{5} + 7$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $14$ |
Ramification index $e$: | $7$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $1$ |
$\Aut(K/\Q_{7})$: | $C_1$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\frac{11}{6}]$ |
Visible Swan slopes: | $[\frac{5}{6}]$ |
Means: | $\langle\frac{5}{7}\rangle$ |
Rams: | $(\frac{5}{6})$ |
Jump set: | undefined |
Roots of unity: | $48 = (7^{ 2 } - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{3})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{2} + 6 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{7} + \left(35 t + 7\right) x^{5} + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + 5$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[5, 0]$ |
Invariants of the Galois closure
Galois degree: | $588$ |
Galois group: | $D_7:F_7$ (as 14T24) |
Inertia group: | Intransitive group isomorphic to $C_7:F_7$ |
Wild inertia group: | $C_7^2$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $6$ |
Galois Artin slopes: | $[\frac{11}{6}, \frac{11}{6}]$ |
Galois Swan slopes: | $[\frac{5}{6},\frac{5}{6}]$ |
Galois mean slope: | $1.8129251700680271$ |
Galois splitting model: |
$x^{14} - 42 x^{11} - 196 x^{10} - 714 x^{9} - 1141 x^{8} - 1992 x^{7} + 4851 x^{6} + 30919 x^{4} - 14364 x^{3} - 40607 x^{2} + 452235 x + 1196417$
|