Properties

Label 7.2.7.16a16.1
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(16\)
Galois group $C_7^2:C_{12}$ (as 14T23)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 6 x + 3 )^{7} + 14 x ( x^{2} + 6 x + 3 )^{2} + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification index $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{4}{3}]$
Visible Swan slopes:$[\frac{1}{3}]$
Means:$\langle\frac{2}{7}\rangle$
Rams:$(\frac{1}{3})$
Jump set:undefined
Roots of unity:$48 = (7^{ 2 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + 14 t x^{2} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (5 t + 2)$
Associated inertia:$2$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $588$
Galois group: $C_7^2:C_{12}$ (as 14T23)
Inertia group: Intransitive group isomorphic to $C_7^2:C_3$
Wild inertia group: $C_7^2$
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3}]$
Galois mean slope: $1.3197278911564627$
Galois splitting model: $x^{14} - 7 x^{11} + 28 x^{10} + 35 x^{9} - 42 x^{8} - 82 x^{7} - 49 x^{6} + 343 x^{5} + 252 x^{4} + 224 x^{3} + 196 x^{2} + 21 x + 59$ Copy content Toggle raw display