Defining polynomial
$( x^{2} + 6 x + 3 )^{6} + 7 x$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: | $C_{12}$ |
This field is Galois and abelian over $\Q_{7}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $48 = (7^{ 2 } - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{3})$, 7.1.3.2a1.2, 7.2.2.2a1.1, 7.2.3.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{2} + 6 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{6} + 7 t \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^5 + 6 z^4 + z^3 + 6 z^2 + z + 6$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $12$ |
Galois group: | $C_{12}$ (as 12T1) |
Inertia group: | Intransitive group isomorphic to $C_6$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $6$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.8333333333333334$ |
Galois splitting model: | $x^{12} - x^{11} - 38 x^{10} - 14 x^{9} + 495 x^{8} + 688 x^{7} - 2157 x^{6} - 5123 x^{5} - 25 x^{4} + 7175 x^{3} + 4629 x^{2} - 534 x - 727$ |