Properties

Label 7.2.6.10a1.1
Base \(\Q_{7}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 6 x + 3 )^{6} + 7 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $-1$
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: $C_{12}$
This field is Galois and abelian over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$48 = (7^{ 2 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.1.3.2a1.2, 7.2.2.2a1.1, 7.2.3.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 7 t \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 6 z^4 + z^3 + 6 z^2 + z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_{12}$ (as 12T1)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $6$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8333333333333334$
Galois splitting model:$x^{12} - x^{11} - 38 x^{10} - 14 x^{9} + 495 x^{8} + 688 x^{7} - 2157 x^{6} - 5123 x^{5} - 25 x^{4} + 7175 x^{3} + 4629 x^{2} - 534 x - 727$