Properties

Label 7.14.16.22
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(16\)
Galois group $C_7^2:C_{12}$ (as 14T23)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 42 x^{10} - 14 x^{9} + 14 x^{7} + 441 x^{6} - 294 x^{5} - 1127 x^{4} + 294 x^{3} - 98 x^{2} + 49\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification exponent $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $1$
This field is not Galois over $\Q_{7}.$
Visible slopes:$[4/3]$

Intermediate fields

$\Q_{7}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + 21 x^{3} + \left(14 t + 35\right) x^{2} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 3t + 4$
Associated inertia:$2$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_7^2:C_{12}$ (as 14T23)
Inertia group:Intransitive group isomorphic to $C_7^2:C_3$
Wild inertia group:$C_7^2$
Unramified degree:$4$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$194/147$
Galois splitting model: $x^{14} - 7 x^{12} - 14 x^{11} - 21 x^{10} + 56 x^{9} + 203 x^{8} + 347 x^{7} + 245 x^{6} - 756 x^{5} - 1841 x^{4} - 2968 x^{3} - 2009 x^{2} - 945 x + 225$ Copy content Toggle raw display