Defining polynomial
\(x^{7} + 28 x^{3} + 7\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $7$ |
Ramification index $e$: | $7$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{7}(\sqrt{7})$ |
Root number: | $i$ |
$\Aut(K/\Q_{7})$: | $C_1$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\frac{3}{2}]$ |
Visible Swan slopes: | $[\frac{1}{2}]$ |
Means: | $\langle\frac{3}{7}\rangle$ |
Rams: | $(\frac{1}{2})$ |
Jump set: | undefined |
Roots of unity: | $6 = (7 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Canonical tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: |
\( x^{7} + 28 x^{3} + 7 \)
|
Ramification polygon
Residual polynomials: | $z^3 + 2$ |
Associated inertia: | $3$ |
Indices of inseparability: | $[3, 0]$ |
Invariants of the Galois closure
Galois degree: | $42$ |
Galois group: | $F_7$ (as 7T4) |
Inertia group: | $D_7$ (as 7T2) |
Wild inertia group: | $C_7$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\frac{3}{2}]$ |
Galois Swan slopes: | $[\frac{1}{2}]$ |
Galois mean slope: | $1.3571428571428572$ |
Galois splitting model: | $x^{7} + 21 x^{5} - 105 x^{4} + 168 x^{3} - 147 x^{2} + 399 x - 633$ |