Show commands: Magma
Group invariants
| Abstract group: | $F_7$ |
| |
| Order: | $42=2 \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $7$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $F_{42}(7) = 7:6$ | ||
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,3,2,6,4,5)$, $(1,2,3,4,5,6,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T4, 21T4, 42T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{3},1$ | $7$ | $2$ | $3$ | $(1,4)(2,3)(5,7)$ |
| 3A1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(1,7,3)(2,4,5)$ |
| 3A-1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(1,3,7)(2,5,4)$ |
| 6A1 | $6,1$ | $7$ | $6$ | $5$ | $(1,2,7,4,3,5)$ |
| 6A-1 | $6,1$ | $7$ | $6$ | $5$ | $(1,5,3,4,7,2)$ |
| 7A | $7$ | $6$ | $7$ | $6$ | $(1,5,2,6,3,7,4)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 7A | ||
| Size | 1 | 7 | 7 | 7 | 7 | 7 | 6 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A | |
| 3 P | 1A | 2A | 1A | 1A | 2A | 2A | 7A | |
| 7 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | |
| Type | ||||||||
| 42.1.1a | R | |||||||
| 42.1.1b | R | |||||||
| 42.1.1c1 | C | |||||||
| 42.1.1c2 | C | |||||||
| 42.1.1d1 | C | |||||||
| 42.1.1d2 | C | |||||||
| 42.1.6a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{7} - 21 x^{5} - 70 x^{4} - 105 x^{3} + \left(7 t^{2} + 672\right) x^{2} + \left(42 t^{2} + 4501\right) x + \left(t^{3} + 61 t^{2} + 108 t + 6582\right)$
|