Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $F_7$ | |
| CHM label : | $F_{42}(7) = 7:6$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,6,4,5), (1,2,3,4,5,6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T4, 21T4, 42T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1 $ | $7$ | $3$ | $(2,3,5)(4,7,6)$ |
| $ 6, 1 $ | $7$ | $6$ | $(2,4,3,7,5,6)$ |
| $ 3, 3, 1 $ | $7$ | $3$ | $(2,5,3)(4,6,7)$ |
| $ 6, 1 $ | $7$ | $6$ | $(2,6,5,7,3,4)$ |
| $ 2, 2, 2, 1 $ | $7$ | $2$ | $(2,7)(3,6)(4,5)$ |
| $ 7 $ | $6$ | $7$ | $(1,2,3,4,5,6,7)$ |
Group invariants
| Order: | $42=2 \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [42, 1] |
| Character table: |
2 1 1 1 1 1 1 .
3 1 1 1 1 1 1 .
7 1 . . . . . 1
1a 3a 6a 3b 6b 2a 7a
2P 1a 3b 3a 3a 3b 1a 7a
3P 1a 1a 2a 1a 2a 2a 7a
5P 1a 3b 6b 3a 6a 2a 7a
7P 1a 3a 6a 3b 6b 2a 1a
X.1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 -1 1
X.3 1 A -/A /A -A -1 1
X.4 1 /A -A A -/A -1 1
X.5 1 A /A /A A 1 1
X.6 1 /A A A /A 1 1
X.7 6 . . . . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|