Properties

Label 7.1.7.12a6.1
Base \(\Q_{7}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(12\)
Galois group $C_7$ (as 7T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 42 x^{6} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $7$
Ramification index $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: $C_7$
This field is Galois and abelian over $\Q_{7}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{6}{7}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{7} + 42 x^{6} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 6$
Associated inertia:$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: $7$
Galois group: $C_7$ (as 7T1)
Inertia group: $C_7$ (as 7T1)
Wild inertia group: $C_7$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.7142857142857142$
Galois splitting model:$x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$