Show commands:
Magma
magma: G := TransitiveGroup(7, 1);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_7$ | ||
CHM label: | $C(7) = 7$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $1$ | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $7$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 7 $ | $1$ | $7$ | $(1,2,3,4,5,6,7)$ |
$ 7 $ | $1$ | $7$ | $(1,3,5,7,2,4,6)$ |
$ 7 $ | $1$ | $7$ | $(1,4,7,3,6,2,5)$ |
$ 7 $ | $1$ | $7$ | $(1,5,2,6,3,7,4)$ |
$ 7 $ | $1$ | $7$ | $(1,6,4,2,7,5,3)$ |
$ 7 $ | $1$ | $7$ | $(1,7,6,5,4,3,2)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $7$ (is prime) | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 7.1 | magma: IdentifyGroup(G);
|
Character table: |
7 1 1 1 1 1 1 1 1a 7a 7b 7c 7d 7e 7f X.1 1 1 1 1 1 1 1 X.2 1 A B C /C /B /A X.3 1 B /C /A A C /B X.4 1 C /A B /B A /C X.5 1 /C A /B B /A C X.6 1 /B C A /A /C B X.7 1 /A /B /C C B A A = E(7) B = E(7)^2 C = E(7)^3 |
magma: CharacterTable(G);