Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_7$ | |
| CHM label : | $C(7) = 7$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $1$ | |
| Generators: | (1,2,3,4,5,6,7) | |
| $|\Aut(F/K)|$: | $7$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7 $ | $1$ | $7$ | $(1,2,3,4,5,6,7)$ |
| $ 7 $ | $1$ | $7$ | $(1,3,5,7,2,4,6)$ |
| $ 7 $ | $1$ | $7$ | $(1,4,7,3,6,2,5)$ |
| $ 7 $ | $1$ | $7$ | $(1,5,2,6,3,7,4)$ |
| $ 7 $ | $1$ | $7$ | $(1,6,4,2,7,5,3)$ |
| $ 7 $ | $1$ | $7$ | $(1,7,6,5,4,3,2)$ |
Group invariants
| Order: | $7$ (is prime) | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [7, 1] |
| Character table: |
7 1 1 1 1 1 1 1
1a 7a 7b 7c 7d 7e 7f
X.1 1 1 1 1 1 1 1
X.2 1 A B C /C /B /A
X.3 1 B /C /A A C /B
X.4 1 C /A B /B A /C
X.5 1 /C A /B B /A C
X.6 1 /B C A /A /C B
X.7 1 /A /B /C C B A
A = E(7)
B = E(7)^2
C = E(7)^3
|