Properties

Label 7.1.7.10a1.2
Base \(\Q_{7}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(10\)
Galois group $F_7$ (as 7T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 35 x^{4} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $7$
Ramification index $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{5}{3}]$
Visible Swan slopes:$[\frac{2}{3}]$
Means:$\langle\frac{4}{7}\rangle$
Rams:$(\frac{2}{3})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{7} + 35 x^{4} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$
Associated inertia:$2$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $42$
Galois group: $F_7$ (as 7T4)
Inertia group: $C_7:C_3$ (as 7T3)
Wild inertia group: $C_7$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{5}{3}]$
Galois Swan slopes: $[\frac{2}{3}]$
Galois mean slope: $1.5238095238095237$
Galois splitting model:$x^{7} - 7 x^{5} + 14 x^{3} - 7 x - 30$