Properties

Label 7.1.19.18a1.1
Base \(\Q_{7}\)
Degree \(19\)
e \(19\)
f \(1\)
c \(18\)
Galois group $C_{19}:C_{3}$ (as 19T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{19} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $19$
Ramification index $e$: $19$
Residue field degree $f$: $1$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{19} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{18} + 5 z^{17} + 3 z^{16} + 3 z^{15} + 5 z^{14} + z^{13} + 2 z^{11} + 3 z^{10} + 6 z^9 + 6 z^8 + 3 z^7 + 2 z^6 + z^4 + 5 z^3 + 3 z^2 + 3 z + 5$
Associated inertia:$3$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $57$
Galois group: $C_{19}:C_3$ (as 19T3)
Inertia group: $C_{19}$ (as 19T1)
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $19$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9473684210526315$
Galois splitting model:not computed