Properties

Label 19T3
Order \(57\)
n \(19\)
Cyclic No
Abelian No
Solvable Yes
Primitive Yes
$p$-group No
Group: $C_{19}:C_{3}$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $19$
Transitive number $t$ :  $3$
Group :  $C_{19}:C_{3}$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 3, 3, 3, 1 $ $19$ $3$ $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$
$ 3, 3, 3, 3, 3, 3, 1 $ $19$ $3$ $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$
$ 19 $ $3$ $19$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19)$
$ 19 $ $3$ $19$ $( 1, 3, 5, 7, 9,11,13,15,17,19, 2, 4, 6, 8,10,12,14,16,18)$
$ 19 $ $3$ $19$ $( 1, 5, 9,13,17, 2, 6,10,14,18, 3, 7,11,15,19, 4, 8,12,16)$
$ 19 $ $3$ $19$ $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)$
$ 19 $ $3$ $19$ $( 1, 9,17, 6,14, 3,11,19, 8,16, 5,13, 2,10,18, 7,15, 4,12)$
$ 19 $ $3$ $19$ $( 1,11, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9,19,10)$

Group invariants

Order:  $57=3 \cdot 19$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [57, 1]
Character table:   
     3  1  1  1   .   .   .   .   .   .
    19  1  .  .   1   1   1   1   1   1

       1a 3a 3b 19a 19b 19c 19d 19e 19f
    2P 1a 3b 3a 19b 19c 19e 19f 19d 19a
    3P 1a 1a 1a 19b 19c 19e 19f 19d 19a
    5P 1a 3b 3a 19d 19f 19a 19c 19b 19e
    7P 1a 3a 3b 19a 19b 19c 19d 19e 19f
   11P 1a 3b 3a 19a 19b 19c 19d 19e 19f
   13P 1a 3a 3b 19f 19a 19b 19e 19c 19d
   17P 1a 3b 3a 19d 19f 19a 19c 19b 19e
   19P 1a 3a 3b  1a  1a  1a  1a  1a  1a

X.1     1  1  1   1   1   1   1   1   1
X.2     1  A /A   1   1   1   1   1   1
X.3     1 /A  A   1   1   1   1   1   1
X.4     3  .  .   B   C  /D  /C  /B   D
X.5     3  .  .  /B  /C   D   C   B  /D
X.6     3  .  .   C  /D  /B   D  /C   B
X.7     3  .  .   D   B   C  /B  /D  /C
X.8     3  .  .  /C   D   B  /D   C  /B
X.9     3  .  .  /D  /B  /C   B   D   C

A = E(3)^2
  = (-1-Sqrt(-3))/2 = -1-b3
B = E(19)^2+E(19)^3+E(19)^14
C = E(19)^4+E(19)^6+E(19)^9
D = E(19)+E(19)^7+E(19)^11