Group action invariants
| Degree $n$ : | $19$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $C_{19}:C_{3}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 1 $ | $19$ | $3$ | $( 2, 8,12)( 3,15, 4)( 5,10, 7)( 6,17,18)( 9,19,13)(11,14,16)$ |
| $ 3, 3, 3, 3, 3, 3, 1 $ | $19$ | $3$ | $( 2,12, 8)( 3, 4,15)( 5, 7,10)( 6,18,17)( 9,13,19)(11,16,14)$ |
| $ 19 $ | $3$ | $19$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19)$ |
| $ 19 $ | $3$ | $19$ | $( 1, 3, 5, 7, 9,11,13,15,17,19, 2, 4, 6, 8,10,12,14,16,18)$ |
| $ 19 $ | $3$ | $19$ | $( 1, 5, 9,13,17, 2, 6,10,14,18, 3, 7,11,15,19, 4, 8,12,16)$ |
| $ 19 $ | $3$ | $19$ | $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)$ |
| $ 19 $ | $3$ | $19$ | $( 1, 9,17, 6,14, 3,11,19, 8,16, 5,13, 2,10,18, 7,15, 4,12)$ |
| $ 19 $ | $3$ | $19$ | $( 1,11, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9,19,10)$ |
Group invariants
| Order: | $57=3 \cdot 19$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [57, 1] |
| Character table: |
3 1 1 1 . . . . . .
19 1 . . 1 1 1 1 1 1
1a 3a 3b 19a 19b 19c 19d 19e 19f
2P 1a 3b 3a 19b 19c 19e 19f 19d 19a
3P 1a 1a 1a 19b 19c 19e 19f 19d 19a
5P 1a 3b 3a 19d 19f 19a 19c 19b 19e
7P 1a 3a 3b 19a 19b 19c 19d 19e 19f
11P 1a 3b 3a 19a 19b 19c 19d 19e 19f
13P 1a 3a 3b 19f 19a 19b 19e 19c 19d
17P 1a 3b 3a 19d 19f 19a 19c 19b 19e
19P 1a 3a 3b 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 A /A 1 1 1 1 1 1
X.3 1 /A A 1 1 1 1 1 1
X.4 3 . . B C /D /C /B D
X.5 3 . . /B /C D C B /D
X.6 3 . . C /D /B D /C B
X.7 3 . . D B C /B /D /C
X.8 3 . . /C D B /D C /B
X.9 3 . . /D /B /C B D C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(19)^2+E(19)^3+E(19)^14
C = E(19)^4+E(19)^6+E(19)^9
D = E(19)+E(19)^7+E(19)^11
|