Properties

Label 7.1.14.15a2.3
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(15\)
Galois group $F_7$ (as 14T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 28 x^{2} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $-i$
$\Aut(K/\Q_{7})$: $C_2$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{7}{6}]$
Visible Swan slopes:$[\frac{1}{6}]$
Means:$\langle\frac{1}{7}\rangle$
Rams:$(\frac{1}{3})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

$\Q_{7}(\sqrt{7\cdot 3})$, 7.1.7.7a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{14} + 28 x^{2} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 2$,$2 z^2 + 6$
Associated inertia:$1$,$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $42$
Galois group: $F_7$ (as 14T4)
Inertia group: $F_7$ (as 14T4)
Wild inertia group: $C_7$
Galois unramified degree: $1$
Galois tame degree: $6$
Galois Artin slopes: $[\frac{7}{6}]$
Galois Swan slopes: $[\frac{1}{6}]$
Galois mean slope: $1.119047619047619$
Galois splitting model: $x^{14} - 28 x^{12} + 112 x^{10} + 1645 x^{8} + 5530 x^{6} + 9163 x^{4} + 7721 x^{2} + 2800$ Copy content Toggle raw display