Defining polynomial
\(x^{14} + 28 x^{2} + 7\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $14$ |
Ramification index $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{7})$: | $C_2$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\frac{7}{6}]$ |
Visible Swan slopes: | $[\frac{1}{6}]$ |
Means: | $\langle\frac{1}{7}\rangle$ |
Rams: | $(\frac{1}{3})$ |
Jump set: | undefined |
Roots of unity: | $6 = (7 - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{7\cdot 3})$, 7.1.7.7a1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: |
\( x^{14} + 28 x^{2} + 7 \)
|
Ramification polygon
Residual polynomials: | $z^7 + 2$,$2 z^2 + 6$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $42$ |
Galois group: | $F_7$ (as 14T4) |
Inertia group: | $F_7$ (as 14T4) |
Wild inertia group: | $C_7$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $6$ |
Galois Artin slopes: | $[\frac{7}{6}]$ |
Galois Swan slopes: | $[\frac{1}{6}]$ |
Galois mean slope: | $1.119047619047619$ |
Galois splitting model: |
$x^{14} - 28 x^{12} + 112 x^{10} + 1645 x^{8} + 5530 x^{6} + 9163 x^{4} + 7721 x^{2} + 2800$
|