Properties

Label 59.2.8.14a1.3
Base \(\Q_{59}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(14\)
Galois group $QD_{16}$ (as 16T12)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 58 x + 2 )^{8} + 3304 x + 118$ Copy content Toggle raw display

Invariants

Base field: $\Q_{59}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{59}$
Root number: $1$
$\Aut(K/\Q_{59})$ $=$$\Gal(K/\Q_{59})$: $\SD_{16}$
This field is Galois over $\Q_{59}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$3480 = (59^{ 2 } - 1)$

Intermediate fields

$\Q_{59}(\sqrt{2})$, $\Q_{59}(\sqrt{59})$, $\Q_{59}(\sqrt{59\cdot 2})$, 59.2.2.2a1.2, 59.1.4.3a1.1 x2, 59.1.4.3a1.2 x2, 59.2.4.6a1.2, 59.1.8.7a1.2 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{59}(\sqrt{2})$ $\cong \Q_{59}(t)$ where $t$ is a root of \( x^{2} + 58 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 3304 t + 118 \) $\ \in\Q_{59}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 11 z^3 + 56 z^2 + 28 z + 8$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $\SD_{16}$ (as 16T12)
Inertia group: Intransitive group isomorphic to $C_8$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:not computed