Properties

Label 59.15.0.1
Base \(\Q_{59}\)
Degree \(15\)
e \(1\)
f \(15\)
c \(0\)
Galois group $C_{15}$ (as 15T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 57 x^{6} + 24 x^{5} + 23 x^{4} + 13 x^{3} + 39 x^{2} + 58 x + 57\) Copy content Toggle raw display

Invariants

Base field: $\Q_{59}$
Degree $d$: $15$
Ramification exponent $e$: $1$
Residue field degree $f$: $15$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{59}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 59 }) }$: $15$
This field is Galois and abelian over $\Q_{59}.$
Visible slopes:None

Intermediate fields

59.3.0.1, 59.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:59.15.0.1 $\cong \Q_{59}(t)$ where $t$ is a root of \( x^{15} + 57 x^{6} + 24 x^{5} + 23 x^{4} + 13 x^{3} + 39 x^{2} + 58 x + 57 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 59 \) $\ \in\Q_{59}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_{15}$ (as 15T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$15$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:Not computed