Defining polynomial
\(x^{9} + 9 x^{7} + 24 x^{6} + 27 x^{5} + 9 x^{4} - 186 x^{3} + 216 x^{2} - 504 x + 647\)
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{5}(\sqrt{2})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 5 }) }$: | $3$ |
This field is not Galois over $\Q_{5}.$ | |
Visible slopes: | None |
Intermediate fields
5.3.2.1, 5.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 5.3.0.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_3\times S_3$ (as 9T4) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $6$ |
Tame degree: | $3$ |
Wild slopes: | None |
Galois mean slope: | $2/3$ |
Galois splitting model: | $x^{9} - 4 x^{8} + 3 x^{7} + 6 x^{6} - 18 x^{5} + 26 x^{4} - 8 x^{3} - 15 x^{2} + 14 x - 13$ |