Properties

Label 5.4.5.20a2.1
Base \(\Q_{5}\)
Degree \(20\)
e \(5\)
f \(4\)
c \(20\)
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 4 x^{2} + 4 x + 2 )^{5} + 15 ( x^{4} + 4 x^{2} + 4 x + 2 ) + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $20$
Ramification index $e$: $5$
Residue field degree $f$: $4$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_4$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{5}{4}]$
Visible Swan slopes:$[\frac{1}{4}]$
Means:$\langle\frac{1}{5}\rangle$
Rams:$(\frac{1}{4})$
Jump set:undefined
Roots of unity:$624 = (5^{ 4 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$, 5.4.1.0a1.1, 5.1.5.5a1.3, 5.2.5.10a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.4.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{4} + 4 x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 15 x + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (3 t^3 + t + 3)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $80$
Galois group: $C_4\times F_5$ (as 20T20)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed