Defining polynomial
|
$( x^{3} + 3 x + 3 )^{5} + 15 x ( x^{3} + 3 x + 3 )^{4} + 25 x^{2} + 5$
|
Invariants
| Base field: | $\Q_{5}$ |
| Degree $d$: | $15$ |
| Ramification index $e$: | $5$ |
| Residue field degree $f$: | $3$ |
| Discriminant exponent $c$: | $24$ |
| Discriminant root field: | $\Q_{5}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{5})$: | $C_5$ |
| This field is not Galois over $\Q_{5}.$ | |
| Visible Artin slopes: | $[2]$ |
| Visible Swan slopes: | $[1]$ |
| Means: | $\langle\frac{4}{5}\rangle$ |
| Rams: | $(1)$ |
| Jump set: | undefined |
| Roots of unity: | $124 = (5^{ 3 } - 1)$ |
Intermediate fields
| 5.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
| Relative Eisenstein polynomial: |
\( x^{5} + \left(5 t^{2} + 10 t + 10\right) x^{4} + 100 t + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^4 + (4 t^2 + 3 t + 4)$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[4, 0]$ |
Invariants of the Galois closure
| Galois degree: | $375$ |
| Galois group: | $C_5\wr C_3$ (as 15T25) |
| Inertia group: | Intransitive group isomorphic to $C_5^2$ |
| Wild inertia group: | $C_5^2$ |
| Galois unramified degree: | $15$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 2]$ |
| Galois Swan slopes: | $[1,1]$ |
| Galois mean slope: | $1.92$ |
| Galois splitting model: |
$x^{15} - 4180 x^{13} - 33715 x^{12} + 5450170 x^{11} + 71303650 x^{10} - 2236914900 x^{9} - 29328166945 x^{8} + 394703262030 x^{7} + 4241127968165 x^{6} - 36092549327109 x^{5} - 248889991186925 x^{4} + 1728465855692785 x^{3} + 4435453567627170 x^{2} - 34542246935468965 x + 42758524605476779$
|