Label 15T25
Order \(375\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_5\times C_5^2:C_3$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $25$
Group :  $C_5\times C_5^2:C_3$
CHM label :  $[5^{3}]3=5wr3$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)
$|\Aut(F/K)|$:  $5$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$
5:  $C_5$
15:  $C_{15}$
75:  $C_5^2 : C_3$

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 5: None

Low degree siblings

15T25 x 7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $375=3 \cdot 5^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [375, 6]
Character table: Data not available.