Properties

Label 5.3.5.24a8.1
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(24\)
Galois group $C_5\wr C_3$ (as 15T25)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 3 x + 3 )^{5} + 15 x ( x^{3} + 3 x + 3 )^{4} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification index $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{5}$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_5$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{4}{5}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$124 = (5^{ 3 } - 1)$

Intermediate fields

5.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(5 t^{2} + 10 t + 10\right) x^{4} + 50 t + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + (4 t^2 + 3 t + 4)$
Associated inertia:$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $375$
Galois group: $C_5\wr C_3$ (as 15T25)
Inertia group: Intransitive group isomorphic to $C_5^2$
Wild inertia group: $C_5^2$
Galois unramified degree: $15$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.92$
Galois splitting model: $x^{15} - 4180 x^{13} - 76010 x^{12} + 4707120 x^{11} + 171319500 x^{10} + 380632725 x^{9} - 64599686305 x^{8} - 1080227091020 x^{7} - 1302083854390 x^{6} + 144036618452991 x^{5} + 1827573911298300 x^{4} + 10043234975446035 x^{3} + 24347243897070930 x^{2} + 9340304205459535 x - 37074934376752679$ Copy content Toggle raw display