Defining polynomial
$( x^{3} + 3 x + 3 )^{5} + 15 x ( x^{3} + 3 x + 3 )^{4} + 5$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $24$ |
Discriminant root field: | $\Q_{5}$ |
Root number: | $1$ |
$\Aut(K/\Q_{5})$: | $C_5$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{4}{5}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $124 = (5^{ 3 } - 1)$ |
Intermediate fields
5.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + \left(5 t^{2} + 10 t + 10\right) x^{4} + 50 t + 5 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^4 + (4 t^2 + 3 t + 4)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[4, 0]$ |
Invariants of the Galois closure
Galois degree: | $375$ |
Galois group: | $C_5\wr C_3$ (as 15T25) |
Inertia group: | Intransitive group isomorphic to $C_5^2$ |
Wild inertia group: | $C_5^2$ |
Galois unramified degree: | $15$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2]$ |
Galois Swan slopes: | $[1,1]$ |
Galois mean slope: | $1.92$ |
Galois splitting model: |
$x^{15} - 4180 x^{13} - 76010 x^{12} + 4707120 x^{11} + 171319500 x^{10} + 380632725 x^{9} - 64599686305 x^{8} - 1080227091020 x^{7} - 1302083854390 x^{6} + 144036618452991 x^{5} + 1827573911298300 x^{4} + 10043234975446035 x^{3} + 24347243897070930 x^{2} + 9340304205459535 x - 37074934376752679$
|