Properties

Label 5.3.5.24a7.1
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(24\)
Galois group $C_5^3:C_{12}$ (as 15T38)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 3 x + 3 )^{5} + \left(10 x + 10\right) ( x^{3} + 3 x + 3 )^{4} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification index $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{4}{5}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$124 = (5^{ 3 } - 1)$

Intermediate fields

5.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + \left(5 t^{2} + 20\right) x^{4} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + (4 t^2 + 3 t + 2)$
Associated inertia:$4$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $1500$
Galois group: $C_5^3:C_{12}$ (as 15T38)
Inertia group: Intransitive group isomorphic to $C_5^3$
Wild inertia group: $C_5^3$
Galois unramified degree: $12$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2]$
Galois Swan slopes: $[1,1,1]$
Galois mean slope: $1.984$
Galois splitting model: $x^{15} - 90 x^{13} - 160 x^{12} + 4935 x^{11} + 10344 x^{10} - 138450 x^{9} - 431940 x^{8} + 2642510 x^{7} + 10032540 x^{6} - 37112344 x^{5} - 137222400 x^{4} + 373425015 x^{3} + 1141392300 x^{2} - 2340156640 x - 889176128$ Copy content Toggle raw display