Properties

Label 5.3.5.24a4.3
Base \(\Q_{5}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(24\)
Galois group $C_{15}$ (as 15T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 3 x + 3 )^{5} + 20 ( x^{3} + 3 x + 3 )^{4} + 55$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification index $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{5}$
Root number: $1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $C_{15}$
This field is Galois and abelian over $\Q_{5}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{4}{5}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$124 = (5^{ 3 } - 1)$

Intermediate fields

5.3.1.0a1.1, 5.1.5.8a4.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 20 x^{4} + 55 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + (t^2 + 2 t + 2)$
Associated inertia:$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $15$
Galois group: $C_{15}$ (as 15T1)
Inertia group: Intransitive group isomorphic to $C_5$
Wild inertia group: $C_5$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.6$
Galois splitting model: $x^{15} - 5 x^{14} - 330 x^{13} + 805 x^{12} + 42810 x^{11} - 8858 x^{10} - 2587170 x^{9} - 3530520 x^{8} + 69748405 x^{7} + 146444045 x^{6} - 802672956 x^{5} - 1778220085 x^{4} + 3494186045 x^{3} + 5796971545 x^{2} - 4690437630 x - 2229758651$ Copy content Toggle raw display