Defining polynomial
|
$( x^{3} + 3 x + 3 )^{5} + 20 ( x^{3} + 3 x + 3 )^{4} + 55$
|
Invariants
| Base field: | $\Q_{5}$ |
| Degree $d$: | $15$ |
| Ramification index $e$: | $5$ |
| Residue field degree $f$: | $3$ |
| Discriminant exponent $c$: | $24$ |
| Discriminant root field: | $\Q_{5}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: | $C_{15}$ |
| This field is Galois and abelian over $\Q_{5}.$ | |
| Visible Artin slopes: | $[2]$ |
| Visible Swan slopes: | $[1]$ |
| Means: | $\langle\frac{4}{5}\rangle$ |
| Rams: | $(1)$ |
| Jump set: | undefined |
| Roots of unity: | $124 = (5^{ 3 } - 1)$ |
Intermediate fields
| 5.3.1.0a1.1, 5.1.5.8a4.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
| Relative Eisenstein polynomial: |
\( x^{5} + 20 x^{4} + 55 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^4 + (t^2 + 2 t + 2)$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[4, 0]$ |
Invariants of the Galois closure
| Galois degree: | $15$ |
| Galois group: | $C_{15}$ (as 15T1) |
| Inertia group: | Intransitive group isomorphic to $C_5$ |
| Wild inertia group: | $C_5$ |
| Galois unramified degree: | $3$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2]$ |
| Galois Swan slopes: | $[1]$ |
| Galois mean slope: | $1.6$ |
| Galois splitting model: |
$x^{15} - 5 x^{14} - 330 x^{13} + 805 x^{12} + 42810 x^{11} - 8858 x^{10} - 2587170 x^{9} - 3530520 x^{8} + 69748405 x^{7} + 146444045 x^{6} - 802672956 x^{5} - 1778220085 x^{4} + 3494186045 x^{3} + 5796971545 x^{2} - 4690437630 x - 2229758651$
|