Defining polynomial
$( x^{3} + 3 x + 3 )^{5} + 5 x^{2} ( x^{3} + 3 x + 3 )^{4} + 80$
|
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $24$ |
Discriminant root field: | $\Q_{5}$ |
Root number: | $1$ |
$\Aut(K/\Q_{5})$: | $C_5$ |
This field is not Galois over $\Q_{5}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{4}{5}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $124 = (5^{ 3 } - 1)$ |
Intermediate fields
5.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of
\( x^{3} + 3 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 5 t^{2} x^{4} + 80 \)
$\ \in\Q_{5}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^4 + (t^2 + 4 t + 1)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[4, 0]$ |
Invariants of the Galois closure
Galois degree: | $375$ |
Galois group: | $C_5\wr C_3$ (as 15T25) |
Inertia group: | Intransitive group isomorphic to $C_5^3$ |
Wild inertia group: | $C_5^3$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2]$ |
Galois Swan slopes: | $[1,1,1]$ |
Galois mean slope: | $1.984$ |
Galois splitting model: |
$x^{15} - 13530 x^{13} - 153340 x^{12} + 66051205 x^{11} + 1422179792 x^{10} - 129571522025 x^{9} - 3966220850515 x^{8} + 72514979689405 x^{7} + 3034538586406415 x^{6} - 6890314839191762 x^{5} - 850427229050490850 x^{4} - 4031986560390239330 x^{3} + 71391930388730706810 x^{2} + 731865479196913983130 x + 1883697717004826843219$
|