Properties

Label 5.2.10.30a2.16
Base \(\Q_{5}\)
Degree \(20\)
e \(10\)
f \(2\)
c \(30\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{10} + 10 x ( x^{2} + 4 x + 2 )^{7} + 15 ( x^{2} + 4 x + 2 )^{6} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $20$
Ramification index $e$: $10$
Residue field degree $f$: $2$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{5}$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_1$
Visible Artin slopes:$[\frac{7}{4}]$
Visible Swan slopes:$[\frac{3}{4}]$
Means:$\langle\frac{3}{5}\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$, 5.2.2.2a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{10} + 10 t x^{7} + 15 x^{6} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 2$,$2 z^2 + 4$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed