Properties

Label 41.3.3.6a1.1
Base \(\Q_{41}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(6\)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 35 )^{3} + 41$ Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $9$
Ramification index $e$: $3$
Residue field degree $f$: $3$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{41}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{41})$: $C_3$
This field is not Galois over $\Q_{41}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$68920 = (41^{ 3 } - 1)$

Intermediate fields

41.3.1.0a1.1, 41.1.3.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:41.3.1.0a1.1 $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{3} + x + 35 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 41 \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $C_3\times S_3$ (as 9T4)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:not computed