Properties

Label 41.11.2.11a1.2
Base \(\Q_{41}\)
Degree \(22\)
e \(2\)
f \(11\)
c \(11\)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{11} + 20 x + 35 )^{2} + 41$ Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $22$
Ramification index $e$: $2$
Residue field degree $f$: $11$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{41}(\sqrt{41})$
Root number: $1$
$\Aut(K/\Q_{41})$ $=$$\Gal(K/\Q_{41})$: $C_{22}$
This field is Galois and abelian over $\Q_{41}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$550329031716248440 = (41^{ 11 } - 1)$

Intermediate fields

$\Q_{41}(\sqrt{41})$, 41.11.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:41.11.1.0a1.1 $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{11} + 20 x + 35 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 41 \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $22$
Galois group: $C_{22}$ (as 22T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Galois unramified degree: $11$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.5$
Galois splitting model:not computed