Group action invariants
Degree $n$: | $22$ | |
Transitive number $t$: | $1$ | |
Group: | $C_{22}$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $1$ | |
$|\Aut(F/K)|$: | $22$ | |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $11$: $C_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $C_{11}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 22 $ | $1$ | $22$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21)( 2, 4, 6, 8,10,12,14,16,18,20,22)$ |
$ 22 $ | $1$ | $22$ | $( 1, 4, 7,10,13,16,19,22, 3, 6, 9,12,15,18,21, 2, 5, 8,11,14,17,20)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1, 5, 9,13,17,21, 3, 7,11,15,19)( 2, 6,10,14,18,22, 4, 8,12,16,20)$ |
$ 22 $ | $1$ | $22$ | $( 1, 6,11,16,21, 4, 9,14,19, 2, 7,12,17,22, 5,10,15,20, 3, 8,13,18)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1, 7,13,19, 3, 9,15,21, 5,11,17)( 2, 8,14,20, 4,10,16,22, 6,12,18)$ |
$ 22 $ | $1$ | $22$ | $( 1, 8,15,22, 7,14,21, 6,13,20, 5,12,19, 4,11,18, 3,10,17, 2, 9,16)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1, 9,17, 3,11,19, 5,13,21, 7,15)( 2,10,18, 4,12,20, 6,14,22, 8,16)$ |
$ 22 $ | $1$ | $22$ | $( 1,10,19, 6,15, 2,11,20, 7,16, 3,12,21, 8,17, 4,13,22, 9,18, 5,14)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,11,21, 9,19, 7,17, 5,15, 3,13)( 2,12,22,10,20, 8,18, 6,16, 4,14)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,13)( 3,14)( 4,15)( 5,16)( 6,17)( 7,18)( 8,19)( 9,20)(10,21)(11,22)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,13, 3,15, 5,17, 7,19, 9,21,11)( 2,14, 4,16, 6,18, 8,20,10,22,12)$ |
$ 22 $ | $1$ | $22$ | $( 1,14, 5,18, 9,22,13, 4,17, 8,21,12, 3,16, 7,20,11, 2,15, 6,19,10)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,15, 7,21,13, 5,19,11, 3,17, 9)( 2,16, 8,22,14, 6,20,12, 4,18,10)$ |
$ 22 $ | $1$ | $22$ | $( 1,16, 9, 2,17,10, 3,18,11, 4,19,12, 5,20,13, 6,21,14, 7,22,15, 8)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,17,11, 5,21,15, 9, 3,19,13, 7)( 2,18,12, 6,22,16,10, 4,20,14, 8)$ |
$ 22 $ | $1$ | $22$ | $( 1,18,13, 8, 3,20,15,10, 5,22,17,12, 7, 2,19,14, 9, 4,21,16,11, 6)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,19,15,11, 7, 3,21,17,13, 9, 5)( 2,20,16,12, 8, 4,22,18,14,10, 6)$ |
$ 22 $ | $1$ | $22$ | $( 1,20,17,14,11, 8, 5, 2,21,18,15,12, 9, 6, 3,22,19,16,13,10, 7, 4)$ |
$ 11, 11 $ | $1$ | $11$ | $( 1,21,19,17,15,13,11, 9, 7, 5, 3)( 2,22,20,18,16,14,12,10, 8, 6, 4)$ |
$ 22 $ | $1$ | $22$ | $( 1,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
Order: | $22=2 \cdot 11$ | |
Cyclic: | yes | |
Abelian: | yes | |
Solvable: | yes | |
GAP id: | [22, 2] |
Character table: not available. |