Properties

Label 41.1.18.17a1.2
Base \(\Q_{41}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(17\)
Galois group $C_{18}:C_6$ (as 18T45)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 246\) Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $17$
Discriminant root field: $\Q_{41}(\sqrt{41\cdot 3})$
Root number: $-1$
$\Aut(K/\Q_{41})$: $C_2$
This field is not Galois over $\Q_{41}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$40 = (41 - 1)$

Intermediate fields

$\Q_{41}(\sqrt{41\cdot 3})$, 41.1.3.2a1.1, 41.1.6.5a1.2, 41.1.9.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{41}$
Relative Eisenstein polynomial: \( x^{18} + 246 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{17} + 18 z^{16} + 30 z^{15} + 37 z^{14} + 26 z^{13} + 40 z^{12} + 32 z^{11} + 8 z^{10} + 11 z^9 + 35 z^8 + 11 z^7 + 8 z^6 + 32 z^5 + 40 z^4 + 26 z^3 + 37 z^2 + 30 z + 18$
Associated inertia:$6$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $108$
Galois group: $C_{18}:C_6$ (as 18T45)
Inertia group: $C_{18}$ (as 18T1)
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $18$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9444444444444444$
Galois splitting model:not computed