Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_2\times D_9:C_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,6,10,17,15,12)(4,5,9,18,16,11)(7,13)(8,14), (1,18,14,5,8,11)(2,17,13,6,7,12)(3,4)(9,15)(10,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 36: $C_6\times S_3$ 54: $(C_9:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: $(C_9:C_3):C_2$
Low degree siblings
18T45Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 6, 2, 2, 1, 1 $ | $9$ | $6$ | $( 3, 6,10,17,15,12)( 4, 5, 9,18,16,11)( 7,13)( 8,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 3,10,15)( 4, 9,16)( 5,18,11)( 6,17,12)$ |
| $ 6, 6, 2, 2, 1, 1 $ | $9$ | $6$ | $( 3,12,15,17,10, 6)( 4,11,16,18, 9, 5)( 7,13)( 8,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 3,15,10)( 4,16, 9)( 5,11,18)( 6,12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3,17)( 4,18)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3, 5,10,18,15,11)( 4, 6, 9,17,16,12)( 7,14)( 8,13)$ |
| $ 6, 6, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 9,15, 4,10,16)( 5,17,11, 6,18,12)( 7, 8)(13,14)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3,11,15,18,10, 5)( 4,12,16,17, 9, 6)( 7,14)( 8,13)$ |
| $ 6, 6, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3,16,10, 4,15, 9)( 5,12,18, 6,11,17)( 7, 8)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 3, 6, 8,10,12,14,15,17)( 2, 4, 5, 7, 9,11,13,16,18)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 3,12, 8,10,17,14,15, 6)( 2, 4,11, 7, 9,18,13,16, 5)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 3,17, 8,10, 6,14,15,12)( 2, 4,18, 7, 9, 5,13,16,11)$ |
| $ 18 $ | $6$ | $18$ | $( 1, 4, 6, 7,10,11,14,16,17, 2, 3, 5, 8, 9,12,13,15,18)$ |
| $ 18 $ | $6$ | $18$ | $( 1, 4,12, 7,10,18,14,16, 6, 2, 3,11, 8, 9,17,13,15, 5)$ |
| $ 18 $ | $6$ | $18$ | $( 1, 4,17, 7,10, 5,14,16,12, 2, 3,18, 8, 9, 6,13,15,11)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 7,14, 2, 8,13)( 3, 9,15, 4,10,16)( 5,12,18, 6,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,14)( 2, 7,13)( 3,10,15)( 4, 9,16)( 5,11,18)( 6,12,17)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 26] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
3 3 1 2 1 2 1 3 1 2 1 2 1 2 2 2 2 2 2 3
1a 6a 3a 6b 3b 2a 2b 6c 6d 6e 6f 2c 9a 9b 9c 18a 18b 18c 6g
2P 1a 3a 3b 3b 3a 1a 1a 3a 3b 3b 3a 1a 9a 9c 9b 9a 9c 9b 3c
3P 1a 2a 1a 2a 1a 2a 2b 2c 2b 2c 2b 2c 3c 3c 3c 6g 6g 6g 2b
5P 1a 6b 3b 6a 3a 2a 2b 6e 6f 6c 6d 2c 9a 9c 9b 18a 18c 18b 6g
7P 1a 6a 3a 6b 3b 2a 2b 6c 6d 6e 6f 2c 9a 9b 9c 18a 18b 18c 6g
11P 1a 6b 3b 6a 3a 2a 2b 6e 6f 6c 6d 2c 9a 9c 9b 18a 18c 18b 6g
13P 1a 6a 3a 6b 3b 2a 2b 6c 6d 6e 6f 2c 9a 9b 9c 18a 18b 18c 6g
17P 1a 6b 3b 6a 3a 2a 2b 6e 6f 6c 6d 2c 9a 9c 9b 18a 18c 18b 6g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1
X.4 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1
X.5 1 A -/A /A -A -1 -1 -A /A -/A A 1 1 -/A -A -1 /A A -1
X.6 1 /A -A A -/A -1 -1 -/A A -A /A 1 1 -A -/A -1 A /A -1
X.7 1 A -/A /A -A -1 1 A -/A /A -A -1 1 -/A -A 1 -/A -A 1
X.8 1 /A -A A -/A -1 1 /A -A A -/A -1 1 -A -/A 1 -A -/A 1
X.9 1 -/A -A -A -/A 1 -1 /A A A /A -1 1 -A -/A -1 A /A -1
X.10 1 -A -/A -/A -A 1 -1 A /A /A A -1 1 -/A -A -1 /A A -1
X.11 1 -/A -A -A -/A 1 1 -/A -A -A -/A 1 1 -A -/A 1 -A -/A 1
X.12 1 -A -/A -/A -A 1 1 -A -/A -/A -A 1 1 -/A -A 1 -/A -A 1
X.13 2 . 2 . 2 . 2 . 2 . 2 . -1 -1 -1 -1 -1 -1 2
X.14 2 . 2 . 2 . -2 . -2 . -2 . -1 -1 -1 1 1 1 -2
X.15 2 . B . /B . 2 . B . /B . -1 A /A -1 A /A 2
X.16 2 . /B . B . 2 . /B . B . -1 /A A -1 /A A 2
X.17 2 . B . /B . -2 . -B . -/B . -1 A /A 1 -A -/A -2
X.18 2 . /B . B . -2 . -/B . -B . -1 /A A 1 -/A -A -2
X.19 6 . . . . . 6 . . . . . . . . . . . -3
X.20 6 . . . . . -6 . . . . . . . . . . . 3
2 1
3 3
3c
2P 3c
3P 1a
5P 3c
7P 3c
11P 3c
13P 3c
17P 3c
X.1 1
X.2 1
X.3 1
X.4 1
X.5 1
X.6 1
X.7 1
X.8 1
X.9 1
X.10 1
X.11 1
X.12 1
X.13 2
X.14 2
X.15 2
X.16 2
X.17 2
X.18 2
X.19 -3
X.20 -3
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|