Properties

Label 37.1.20.19a1.3
Base \(\Q_{37}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(19\)
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 148\) Copy content Toggle raw display

Invariants

Base field: $\Q_{37}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $19$
Discriminant root field: $\Q_{37}(\sqrt{37})$
Root number: $1$
$\Aut(K/\Q_{37})$: $C_4$
This field is not Galois over $\Q_{37}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$36 = (37 - 1)$

Intermediate fields

$\Q_{37}(\sqrt{37})$, 37.1.4.3a1.3, 37.1.5.4a1.1, 37.1.10.9a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{37}$
Relative Eisenstein polynomial: \( x^{20} + 148 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{19} + 20 z^{18} + 5 z^{17} + 30 z^{16} + 35 z^{15} + z^{14} + 21 z^{13} + 5 z^{12} + 22 z^{11} + 17 z^{10} + 15 z^9 + 17 z^8 + 22 z^7 + 5 z^6 + 21 z^5 + z^4 + 35 z^3 + 30 z^2 + 5 z + 20$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $80$
Galois group: $C_4\times F_5$ (as 20T20)
Inertia group: $C_{20}$ (as 20T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $20$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.95$
Galois splitting model:not computed