Properties

Label 3.9.9.12
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(9\)
Galois group $(C_3^2:C_8):C_2$ (as 9T19)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 6 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification exponent $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[9/8, 9/8]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 6 x + 3 \) Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $F_9:C_2$ (as 9T19)
Inertia group: $F_9$ (as 9T15)
Wild inertia group: $C_3^2$
Unramified degree: $2$
Tame degree: $8$
Wild slopes: $[9/8, 9/8]$
Galois mean slope: $79/72$
Galois splitting model:$x^{9} - 3 x^{8} + 12 x^{5} + 12 x^{4} - 12 x + 4$