Defining polynomial
\(x^{9} + 6 x + 3\) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $9$ |
Ramification exponent $e$: | $9$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $9$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $-i$ |
$\card{ \Aut(K/\Q_{ 3 }) }$: | $1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible slopes: | $[9/8, 9/8]$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: | \( x^{9} + 6 x + 3 \) |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $F_9:C_2$ (as 9T19) |
Inertia group: | $F_9$ (as 9T15) |
Wild inertia group: | $C_3^2$ |
Unramified degree: | $2$ |
Tame degree: | $8$ |
Wild slopes: | $[9/8, 9/8]$ |
Galois mean slope: | $79/72$ |
Galois splitting model: | $x^{9} - 3 x^{8} + 12 x^{5} + 12 x^{4} - 12 x + 4$ |