Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $(C_3^2:C_8):C_2$ | |
| CHM label : | $E(9):2D_{8}$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,4,5,2,3,8,7), (1,2)(3,5)(6,7), (1,2,9)(3,4,5)(6,7,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 16: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1 $ | $12$ | $2$ | $(3,7)(4,8)(5,6)$ |
| $ 8, 1 $ | $18$ | $8$ | $(2,3,6,7,9,8,5,4)$ |
| $ 4, 4, 1 $ | $36$ | $4$ | $(2,3,9,8)(4,5,7,6)$ |
| $ 8, 1 $ | $18$ | $8$ | $(2,4,5,8,9,7,6,3)$ |
| $ 4, 4, 1 $ | $18$ | $4$ | $(2,5,9,6)(3,4,8,7)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 6, 3 $ | $24$ | $6$ | $(1,2,3,4,8,6)(5,9,7)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 182] |
| Character table: |
2 4 2 3 2 3 3 4 1 1
3 2 1 . . . . . 1 2
1a 2a 8a 4a 8b 4b 2b 6a 3a
2P 1a 1a 4b 2b 4b 2b 1a 3a 3a
3P 1a 2a 8a 4a 8b 4b 2b 2a 1a
5P 1a 2a 8b 4a 8a 4b 2b 6a 3a
7P 1a 2a 8b 4a 8a 4b 2b 6a 3a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 1
X.3 1 -1 1 -1 1 1 1 -1 1
X.4 1 1 -1 -1 -1 1 1 1 1
X.5 2 . . . . -2 2 . 2
X.6 2 . A . -A . -2 . 2
X.7 2 . -A . A . -2 . 2
X.8 8 -2 . . . . . 1 -1
X.9 8 2 . . . . . -1 -1
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|