Show commands: Magma
Group invariants
Abstract group: | $(C_3^2:C_8):C_2$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $9$ |
| |
Transitive number $t$: | $19$ |
| |
CHM label: | $E(9):2D_{8}$ | ||
Parity: | $-1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,6,4,5,2,3,8,7)$, $(1,2)(3,5)(6,7)$, $(1,2,9)(3,4,5)(6,7,8)$, $(1,4,7)(2,5,8)(3,6,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1$ | $9$ | $2$ | $4$ | $(2,9)(3,8)(4,7)(5,6)$ |
2B | $2^{3},1^{3}$ | $12$ | $2$ | $3$ | $(1,6)(2,7)(8,9)$ |
3A | $3^{3}$ | $8$ | $3$ | $6$ | $(1,2,9)(3,4,5)(6,7,8)$ |
4A | $4^{2},1$ | $18$ | $4$ | $6$ | $(2,5,9,6)(3,4,8,7)$ |
4B | $4^{2},1$ | $36$ | $4$ | $6$ | $(1,6,9,4)(3,8,7,5)$ |
6A | $6,3$ | $24$ | $6$ | $7$ | $(1,8,2,6,9,7)(3,5,4)$ |
8A1 | $8,1$ | $18$ | $8$ | $7$ | $(2,7,5,3,9,4,6,8)$ |
8A-1 | $8,1$ | $18$ | $8$ | $7$ | $(2,8,6,4,9,3,5,7)$ |
Malle's constant $a(G)$: $1/3$
Character table
1A | 2A | 2B | 3A | 4A | 4B | 6A | 8A1 | 8A-1 | ||
Size | 1 | 9 | 12 | 8 | 18 | 36 | 24 | 18 | 18 | |
2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 4A | 4A | |
3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2B | 8A1 | 8A-1 | |
Type | ||||||||||
144.182.1a | R | |||||||||
144.182.1b | R | |||||||||
144.182.1c | R | |||||||||
144.182.1d | R | |||||||||
144.182.2a | R | |||||||||
144.182.2b1 | C | |||||||||
144.182.2b2 | C | |||||||||
144.182.8a | R | |||||||||
144.182.8b | R |
Regular extensions
$f_{ 1 } =$ |
$\left(t^{2} + 8\right) x^{9} + \left(-2 t^{3} - t^{2} - 16 t - 8\right) x^{8} + \left(t^{4} + 8 t^{2}\right) x^{7} + \left(t^{4} + 8 t^{2}\right) x^{6} + \left(t^{4} + 8 t^{2}\right) x^{5} + \left(t^{4} + 8 t^{2}\right) x^{4} + \left(t^{4} + 8 t^{2}\right) x^{3} + \left(t^{4} + 8 t^{2}\right) x^{2} + \left(t^{4} - t^{2}\right) x + \left(t^{4} + 2 t^{3} + t^{2}\right)$
|