Defining polynomial
$( x^{5} + 2 x + 1 )^{3} + \left(3 x^{4} + 3 x^{2} + 6\right) ( x^{5} + 2 x + 1 )^{2} + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $20$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $242 = (3^{ 5 } - 1)$ |
Intermediate fields
3.5.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{3} + 3\right) x^{2} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + (t^4 + 2 t^2 + 2 t)$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $810$ |
Galois group: | $C_3^4:C_{10}$ (as 15T33) |
Inertia group: | Intransitive group isomorphic to $C_3^4$ |
Wild inertia group: | $C_3^4$ |
Galois unramified degree: | $10$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2, 2]$ |
Galois Swan slopes: | $[1,1,1,1]$ |
Galois mean slope: | $1.9753086419753085$ |
Galois splitting model: |
$x^{15} - 12 x^{13} - 16 x^{12} + 18 x^{11} + 48 x^{10} + 123 x^{9} + 342 x^{8} + 294 x^{7} + 138 x^{6} + 405 x^{5} + 1002 x^{4} + 1636 x^{3} - 216 x^{2} - 2784 x - 1376$
|